CAS CS 460/660
Introduction to Database Systems

Query Optimization Il

Review

B Implementation of Relational Operations as lterators
¥ Focus largely on External algorithms (sorting/hashing)
B Choices depend on indexes, memory, stats,...
B Joins
+" Blocked nested loops:
= simple, exploits extra memory
v Indexed nested loops:
= bestif 1 rel small and one indexed
v Sort/Merge Join
= good with small amount of memory, bad with duplicates
¥" Hash Join
= fast (enough memory), bad with skewed data
= Relatively easy to parallelize
B Sort and Hash-Based Aggs and DupElim

1.2

Query Optimization Overview

B Query can be converted to relational algebra

B Rel. Algebra converted to tree, joins as branches
B Each operator has implementation choices

B Operators can also be applied in different order!

SELECT S.sname Tfs ame
FROM Reserves R, Sailors S T
WHERE R.sid=S.sid AND -

R.bid=100 AND S.rating>5 bid=100"" rating > 5

l><] sid=sid

T (sname)(O(bid=100 A rating > 5) (Reserves >< Sailors)) / \

Reserves Sailors
1.3

Relational Algebra Equivalences

B Allow us to choose different operator orders and to push’ selections and
projections ahead of joins.

Ounna(R) = 0,(... 0, (R)) Cascade
Ocl(OCZ(R))E o (%(R)] (Commute)

+ Projections ;ral(R) 1(((R)) (Cascade)

(if an includes an-1 includes... al)

B Selections

@ JOINS: RiqSI<T) =(RIXIS] T (Associative)
(RIXIS) = (SIXR) (Commute)

These two mean we can do joins in any order.

1.4

More Equivalences

A projection commutes with a selection that only uses attributes retained
by the projection.

Selection between attributes of the two arguments of a cross-product
converts cross-product to a join.

Projection Push: A projection applied to RN S can be pushed before the
join by retaining only attributes of R (and S) that are needed for the join or
are kept by the projection.

1.5

The “System R” Query Optimizer

B Impact:

+~ Inspired most optimizers in use today

+~ Works well for small-med complexity queries (< 10 joins)
B Cost estimation:

+ Very inexact, but works ok in practice.

<~ Statistics, maintained in system catalogs, used to estimate cost of operations
and result sizes.

+~ Considers a simple combination of CPU and I/O costs.
+ More sophisticated techniques known now.
B Plan Space: Too large, must be pruned.

+~ Only the space of left-deep plans is considered.
+~ Cartesian products avoided.

1.6

Cost Estimation

B To estimate cost of a plan:
+ Must estimate cost of each operation in plan tree and sum them up.

= Depends on input cardinalities.

< S0, must estimate size of result for each operation in tree!
= Use information about the input relations.
* For selections and joins, assume independence of predicates.

B |n System R, cost is boiled down to a single number consisting of
#1/0 ops + factor * #CPU instructions

1.7

Statistics and Catalogs

B Need information about the relations and indexes involved.
Catalogs typically contain at least:
+ # tuples (NTuples) and # pages (NPages) per rel’'n.

distinct key values (NValues) for each index.

low/high key values (Low/High) for each index.

Index height (IHeight) for each tree index.
index pages (INPages) for each index.

B Stats in catalogs updated periodically.

<~ Updating whenever data changes is too expensive; lots of
approximation anyway, so slight inconsistency ok.

B More detailed information (e.g., histograms of the values in some field)
are sometimes stored.

1.8

Size Estimation and Reduction Factors

B Consider a query block:

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

B Reduction factor (RF) associated with each ferm
reflects the impact of the term in reducing result size.

m RF is usually called “selectivity’.

m How to predict size of output?

<~ Need to know/estimate input size

v Need to know/estimate RFs

v Need to know/assume how terms are related

1.9

Result Size Estimation for Selections

Result cardinality (for conjunctive terms) =
input tuples * product of all RF’s.

Assumptions:
1. Values are uniformly distributed and terms are independent!
2. In System R, stats only tracked for indexed columns
(modern systems have removed this restriction)
Term col=value
RF = 1/NValues(l) (e.g. rating=5, RF = 1/10 (assume rating:[1,10])
Term col1=col2
RF = 1/MAX(NValues(l1), NValues(I2))
Term col>value
RF = (High(l)-value)/(High(l)-Low(l))

Note, In System R, if missing indexes, assume 1/10!!!

1.10

Reduction Factors & Histograms

B For better RF estimation, many systems use histograms:

No. of Values 2 3 3 1 8 2 1
Value 0-.99 |1-1.992-2.99| 3-3.994-4.99| 5-5.99|6-6.99
equiwidth
No. of Values 3 3 3 3 3 3
Value 0-.99 11-1.99]|2-2.9913-4.05 |4.06-4.67 |4.68-4.99 |5-6.99

equidepth

Histograms and other Stats

B Postgres uses equidepth histograms (need to store just the
boundaries) and Most Common Values (MCV).

B Example:

most_common_vals |
{EJAAAA,BBAAAA,CRAAAA FCAAAA ,FEAAAA,GSAAAA,JOAAAA MCAAAA NAAAAA}

most_common_fregs | {0.00333333,0.003,0.003,0.003,0.003,0.003,0.003,0.003,0.003}

The estimator uses both histograms (for range queries) and MCVs
for exact match queries (equality).

Sometimes, we use both to estimate range queries and join results.

See more:

http://www.postgresql.org/docs/9.2/interactive/row-estimation-examples.html

Result Size estimation for joins

B Q: Given ajoin of R and S, what is the range of possible result sizes (in
#of tuples)?

¥+ Hint: what if R and S have no attributes in common?
¥ Join attributes are a key for R (and a Foreign Key in S)?

B General case: join attributes in common but a key for neither:

v estimate each tuple r of R generates NTuples(S)/NKeys(A,S) result tuples,
So result size estimate:

(NTuples(R) * NTuples(S)) / NValues(A,S)

¥ but can also can estimate each tuple s of S generates NTuples(R)/
NKeys(A,R) result tuples, so:

(NTuples(R) * NTuples(S)) / NValues(A,)
" If these two estimates differ, take the lower one!

Enumeration of Alternative Plans

B There are two main cases:
+~ Single-relation plans (unary ops) and Multiple-relation plans

B For unary operators:

+~ For a scan, each available access path (file scan / index) is considered, and the
one with the least estimated cost is chosen.

<+ consecutive Scan, Select, Project and Aggregate operations can be
essentially carried out together

(e.g., if an index is used for a selection, projection is done for each retrieved tuple,
and the resulting tuples are pipelined into the aggregate computation).

I/0 Cost Estimates for Single-Relation Plans

B Index | on primary key matches selection:
«~ Costis Height(l)+1 for a B+ tree, about 1.2 for hash index (or 2.2)

B Clustered index | matching one or more selects:

« (NPages(l)+NPages(R)) * product of RF’s of matching selects.
B Non-clustered index | matching one or more selects:

« (NPages(l)+NTuples(R)) * product of RF’s of matching selects.
B Sequential scan of file:

+ NPages(R).

Fy Must also charge for duplicate elimination if required

Schema for Examples

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

B Reserves:

+~ Each tuple is 40 bytes long, 100 tuples per page, 1000 pages. 100 distinct
bids.

B Sailors:

+~ Each tuple is 50 bytes long, 80 tuples per page, 500 pages. 10 Ratings,
40,000 sids.

SELECT S.sid

FROM sSailors S
Example WHERE S.rating=8

B If we have an ;
+~ Cardinality: (1/NKeys(l)) * NTuples(S) = (1/10) * 40000 tuples retrieved.

y (1/NKeys(l)) * (NPages(l)+NPages(S)) =
(1/NKeys(l)) * NPages(S)
s (1/NKeys(l)) * (NPages(l)+NTuples(S)) =

+~ Plus of course Height(l). Usually, 2-4 pages.
B If we have an ,

+ Would have to retrieve all tuples/pages. With a index, the
, with index, . No reason to use this index! (see
below)
B Doing a

+ We retrieve all file pages

Cost-based Query Sub-System

_ %Select *
Queries . From Blah B :
. Where B.blah = blah .
F ereseeeeommesomserossesesreesereesseeeommeseses s Usually there is a
< heuristics-based
rewriting step before
the cost-based steps.
Query Parser
Query Optimizer
= X

> | | Plan Generator Plan Cost Estimator Catalog Manager

- =
" o] e

Query Plan Evaluator

System R - Plans to Consider

For each block, plans considered are:

 All available access methods, for each relation in
FROM clause. >

 All /eft-deep join trees /

<] D
* i.e., all ways to join the relations one-at-a-time, \
considering all relation permutations and join
< C

methods.

(note: system R originally only / \
had NL and Sort Merge) K 5

Highlights of System R Optimizer

B Impact:
+~ Most widely used currently; works well for < 10 joins.

+ Very inexact, but works ok in practice.

<~ Statistics, maintained in system catalogs, used to estimate cost of operations
and result sizes.

+~ Considers combination of CPU and I/O costs.
« For simplicity we ignore CPU costs in this discussion
+ More sophisticated techniques known now.

O Too large, must be pruned.
<+ Only the space of is considered.
+~ Cartesian products avoided.

1.20

Queries Over Multiple Relations

B Fundamental decision in System R: are
considered.

+~ As the number of joins increases, the number of alternative plans grows rapidly;
we need to restrict the search space.

+~ Left-deep trees allow us to generate all

» Intermediate results not written to temporary files.
= Not all left-deep trees are fully pipelined (e.g., SM join).

Enumeration: Dynamic Programming

B Plans differ by: order of the N relations, access method for each relation,
and the join method for each join.

¥ maximum possible orderings = N! (but delay X-products)
B Enumerated using N passes

B For each subset of relations, retain only:
+~ Cheapest plan overall (possibly unordered), plus
+ Cheapest plan for each of the tuples.

1.22

Enumeration: Dynamic Programming

O Find best 1-relation plans for each relation.

] Find best ways to join result of each 1-relation plan as outer to
another relation.

L] Find best ways to join result of a (N-1)-rel’n plan as outer to the
N’th relation.

1.23

Interesting Orders

B An intermediate result has an “interesting order” if
it is returned in order of any of:

¢ ORDER BY attributes
© GROUP BY attributes
¥ Join attributes of other joins

1.24

System R Plan Enumeration (Contd.)

B An N-1 way plan is not combined with an additional
relation unless there is a join condition between
them, unless all predicates in WHERE have been
used up.

7 1.e.,

O etc. handled
as a final step, using either an "interestingly
ordered’ plan or an additional sorting operator.

M |n spite of pruning plan space, this approach is
in the # of tables.

B COST = #10s + (inst_per_lIO * CPU Inst)

1.25

Example (modified from book ch 15)

Select S.sname Indexes
FROM Sailors S, Reserves R Reserves:
WHERE S.sid = R.sid Clustered B+ tree on bid

AND S.Rating > 5

. Sailors:
AND R.bid = 100

Unclust B+ tree on rating

Clustered B+ tree on bid matches bid=100, and is cheaper than file
scan

B+ tree matches rating>5, not very selective, and index is unclustered,
so file scan w/ select is likely cheaper. Also, Sailors.rating is not an interesting
order.

We consider each Pass 1 plan as the outer:
Use Sort Merge to join with Sailors as inner

Use BNL on result of selection on Reserves.bid

1.26

Example (modified from book ch 15)

Select S.sid, COUNT(*) AS numredres Sallors: .
B+ on sid
FROM Sailors S, Reserves R, Boats B Reserves:
WHERE S.sid = R.sid AND R.bid = B.bid Clustered B+ tree on bid
AND B.color = “red” B+ on sid
GROUP BY S.sid Boats
Clustered Hash on color

e Passl: Best plan(s) for accessing each relation
— Sailors: File Scan; B+ on sid
— Reserves: File Scan; B+ on bid, B+ on sid
— Boats: Hash on color

(note: given selection on color, clustered Hash is likely to be cheaper than file
scan, so only it is retained)

1.27

Pass 2

B For each of the plans in pass 1, generate plans joining another
relation as the inner (avoiding cross products).

B Consider all join methods and every access path for the inner.
v File Scan Reserves (outer) with Boats (inner)
v File Scan Reserves (outer) with Sailors (inner)
v" B+ on Reserves.bid (outer) with Boats (inner)
v" B+ on Reserves.bid (outer) with Sailors (inner)
v" B+ on Reserves.sid (outer) with Boats (inner)
v" B+ on Reserves.sid (outer) with Sailors (inner)
v File Scan Sailors (outer) with Reserves (inner)
v' B+Tree Sailors.sid (outer) with Reserves (inner)
¥ Hash on Boats.color (outer) with Reserves (inner)

B Retain cheapest plan for each pair of relations plus cheapest plan for each
interesting order.
1.28

Pass 3

For each of the plans retained from Pass 2, taken M
Sid, COUNT(*)

as the outer, generate plans for the remaining join
‘eg |
Outer= Hash on Boats.color JOIN Reserves GROUPBY
Inner = Sailors [>|<]
Join Method = Index NL using Sailors.sid B+Tree sid=sid
Then, add the cost for doing the group by and b%ﬂﬁ \Sa"ors
aggregate:
+ This is the cost to sort the result by sid, 0 Reserves

unless it has already been sorted by a

Color=red
previous operator. T

Boats
Then, choose the cheapest plan overall

1.29

Nested Queries

B Nested block is optimized independently,

with the outer tuple considered as providing

a selection condition.

B Outer block is optimized with the cost of

“calling’ nested block computation taken into

account.

B Implicit ordering of these blocks means that
some good strategies are not considered.

1.30

SELECT S.sname
FROM sSailors S

(SELECT ~
FROM Reserves R
WHERE R.bid=103
AND R.sid=S.sid)

Nested block to optimize:
SELECT -~
FROM Reserves R
WHERE R.bid=103

AND R:.sid= outer value

Equivalent non-nested query:
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

AND R.bid=103

Points to Remember

B Must understand optimization in order to understand
the performance impact of a given database design
(relations, indexes) on a workload (set of queries).

B Two parts to optimizing a query:

0 Consider a set of alternative plans.
» Must prune search space; typically, left-deep plans only.
0 Must estimate cost of each plan that is considered.
* Must estimate size of result and cost for each plan node.
» Key issues: Statistics, indexes, operator implementations.

1.31

Points to Remember

B Single-relation queries:
< All access paths considered, cheapest is chosen.

+ Issues: Selections that match index, whether index key has
all needed fields and/or provides tuples in a desired order.

1.32

More Points to Remember

B Multiple-relation queries:
< All single-relation plans are first enumerated.
= Selections/projections considered as early as possible.

<~ Next, for each 1-relation plan, all ways of joining another
relation (as inner) are considered.

+~ Next, for each 2-relation plan that is retained’, all ways of
joining another relation (as inner) are considered, etc.

+~ At each level, for each subset of relations, only best plan for
each interesting order of tuples is retained’.

1.33

Summary

Performance can be dramatically improved by changing access
methods, order of operators.

lterator interface

Cost estimation
¥+ Size estimation and reduction factors

Statistics and Catalogs
Relational Algebra Equivalences
Choosing alternate plans
Multiple relation queries

We focused on “System R”-style optimizers

v" New areas: Rule-based optimizers, random statistical approaches
(eg simulated annealing), adaptive/dynamic optimization.

1.34

