
1.1

CAS CS 460/660
Introduction to Database Systems

Query Optimization II

1.2

Review

■  Implementation of Relational Operations as Iterators
➹  Focus largely on External algorithms (sorting/hashing)

■  Choices depend on indexes, memory, stats,…
■  Joins

➹  Blocked nested loops:
§  simple, exploits extra memory

➹  Indexed nested loops:
§  best if 1 rel small and one indexed

➹  Sort/Merge Join
§  good with small amount of memory, bad with duplicates

➹  Hash Join
§  fast (enough memory), bad with skewed data
§  Relatively easy to parallelize

■  Sort and Hash-Based Aggs and DupElim

1.3

Query Optimization Overview

SELECT S.sname
FROM Reserves R, Sailors S
WHERE R.sid=S.sid AND
 R.bid=100 AND S.rating>5

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

■  Query can be converted to relational algebra
■  Rel. Algebra converted to tree, joins as branches
■  Each operator has implementation choices
■  Operators can also be applied in different order!

π(sname)(σ(bid=100 ∧ rating > 5) (Reserves ▹◃ Sailors))

1.4

Relational Algebra Equivalences

■  Allow us to choose different operator orders and to `push’ selections and
projections ahead of joins.

■  Selections:
(Cascade)() () () σ σ σ c cn c cn R R 1 1 ∧ ∧ ≡

€

σ c1 σ c2 R()()≡ σ c2 σ c1 R()() (Commute)

❖  Projections:

€

πa1 R()≡ πa1 ... πan R()()() (Cascade)

These two mean we can do joins in any order.

(if an includes an-1 includes… a1)

❖  Joins: R (S T) (R S) T (Associative)

(R S) (S R) (Commute)

1.5

More Equivalences

■  A projection commutes with a selection that only uses attributes retained
by the projection.

■  Selection between attributes of the two arguments of a cross-product
converts cross-product to a join.

■  Selection Push: selection on R attrs commutes with

 R S: σ(R S) ≡ σ(R) S

■  Projection Push: A projection applied to R S can be pushed before the
join by retaining only attributes of R (and S) that are needed for the join or
are kept by the projection.

1.6

The “System R” Query Optimizer

■  Impact:
➹  Inspired most optimizers in use today
➹  Works well for small-med complexity queries (< 10 joins)

■  Cost estimation:
➹  Very inexact, but works ok in practice.
➹  Statistics, maintained in system catalogs, used to estimate cost of operations

and result sizes.
➹  Considers a simple combination of CPU and I/O costs.
➹  More sophisticated techniques known now.

■  Plan Space: Too large, must be pruned.
➹  Only the space of left-deep plans is considered.
➹  Cartesian products avoided.

1.7

Cost Estimation

■  To estimate cost of a plan:
➹  Must estimate cost of each operation in plan tree and sum them up.

§  Depends on input cardinalities.

➹  So, must estimate size of result for each operation in tree!
§  Use information about the input relations.
§  For selections and joins, assume independence of predicates.

■  In System R, cost is boiled down to a single number consisting of
 #I/O ops + factor * #CPU instructions

1.8

Statistics and Catalogs
■  Need information about the relations and indexes involved.
 Catalogs typically contain at least:

➹  # tuples (NTuples) and # pages (NPages) per rel’n.
➹  # distinct key values (NValues) for each index.
➹  low/high key values (Low/High) for each index.
➹  Index height (IHeight) for each tree index.
➹  # index pages (INPages) for each index.

■  Stats in catalogs updated periodically.
➹  Updating whenever data changes is too expensive; lots of

approximation anyway, so slight inconsistency ok.

■  More detailed information (e.g., histograms of the values in some field)
are sometimes stored.

1.9

Size Estimation and Reduction Factors

■ Consider a query block:

■ Reduction factor (RF) associated with each term
reflects the impact of the term in reducing result size.

■  RF is usually called “selectivity”.
■  How to predict size of output?

➹ Need to know/estimate input size
➹ Need to know/estimate RFs
➹ Need to know/assume how terms are related

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

1.10

Result Size Estimation for Selections
■  Result cardinality (for conjunctive terms) =

input tuples * product of all RF’s.
Assumptions:

1. Values are uniformly distributed and terms are independent!
2. In System R, stats only tracked for indexed columns

(modern systems have removed this restriction)
■  Term col=value

RF = 1/NValues(I) (e.g. rating=5, RF = 1/10 (assume rating:[1,10])
■  Term col1=col2 (This is handy for joins too…)

RF = 1/MAX(NValues(I1), NValues(I2))
■  Term col>value

RF = (High(I)-value)/(High(I)-Low(I))

■  Note, In System R, if missing indexes, assume 1/10!!!

1.11

Reduction Factors & Histograms

■  For better RF estimation, many systems use histograms:

equiwidth

No. of Values 2 3 3 1 8 2 1
Value 0-.99 1-1.99 2-2.99 3-3.994-4.99 5-5.99 6-6.99

No. of Values 3 3 3 3 3 3 3
Value 0-.99 1-1.99 2-2.99 3-4.05 4.06-4.67 4.68-4.99 5-6.99

equidepth

1.12

Histograms and other Stats

■  Postgres uses equidepth histograms (need to store just the
boundaries) and Most Common Values (MCV).

■  Example:
most_common_vals |
{EJAAAA,BBAAAA,CRAAAA,FCAAAA,FEAAAA,GSAAAA,JOAAAA,MCAAAA,NAAAAA}
most_common_freqs | {0.00333333,0.003,0.003,0.003,0.003,0.003,0.003,0.003,0.003}

The estimator uses both histograms (for range queries) and MCVs
for exact match queries (equality).
Sometimes, we use both to estimate range queries and join results.

See more:
http://www.postgresql.org/docs/9.2/interactive/row-estimation-examples.html

1.13

Result Size estimation for joins

■  Q: Given a join of R and S, what is the range of possible result sizes (in
#of tuples)?
➹  Hint: what if R and S have no attributes in common?
➹  Join attributes are a key for R (and a Foreign Key in S)?

■  General case: join attributes in common but a key for neither:
➹  estimate each tuple r of R generates NTuples(S)/NKeys(A,S) result tuples,

so result size estimate:
(NTuples(R) * NTuples(S)) / NValues(A,S)

➹  but can also can estimate each tuple s of S generates NTuples(R)/
NKeys(A,R) result tuples, so:

 (NTuples(R) * NTuples(S)) / NValues(A,R)
➹  If these two estimates differ, take the lower one!

1.14

Enumeration of Alternative Plans
■  There are two main cases:

➹  Single-relation plans (unary ops) and Multiple-relation plans

■  For unary operators:
➹  For a scan, each available access path (file scan / index) is considered, and the

one with the least estimated cost is chosen.

➹  consecutive Scan, Select, Project and Aggregate operations can be
essentially carried out together

(e.g., if an index is used for a selection, projection is done for each retrieved tuple,
and the resulting tuples are pipelined into the aggregate computation).

1.15

 I/O Cost Estimates for Single-Relation Plans

■  Index I on primary key matches selection:
➹  Cost is Height(I)+1 for a B+ tree, about 1.2 for hash index (or 2.2)

■  Clustered index I matching one or more selects:
➹  (NPages(I)+NPages(R)) * product of RF’s of matching selects.

■  Non-clustered index I matching one or more selects:
➹  (NPages(I)+NTuples(R)) * product of RF’s of matching selects.

■  Sequential scan of file:
➹  NPages(R).

➹  Note: Must also charge for duplicate elimination if required

1.16

Schema for Examples

■  Reserves:
➹  Each tuple is 40 bytes long, 100 tuples per page, 1000 pages. 100 distinct

bids.
■  Sailors:

➹  Each tuple is 50 bytes long, 80 tuples per page, 500 pages. 10 Ratings,
40,000 sids.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

1.17

Example

■  If we have an index on rating:
➹  Cardinality: (1/NKeys(I)) * NTuples(S) = (1/10) * 40000 tuples retrieved.
➹  Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(S)) = (1/10) * (50+500) = 55

pages are retrieved. Another estimate is (1/NKeys(I)) * NPages(S)
➹  Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(S)) = (1/10) * (50+40000)

= 4005 pages are retrieved.
➹  Plus of course Height(I). Usually, 2-4 pages.

■  If we have an index on sid:
➹  Would have to retrieve all tuples/pages. With a clustered index, the cost is

50+500, with unclustered index, 50+40000. No reason to use this index! (see
below)

■  Doing a file scan:
➹  We retrieve all file pages (500).

SELECT S.sid
FROM Sailors S
WHERE S.rating=8

1.18

Cost-based Query Sub-System

 Query Parser

Query Optimizer

Plan Generator Plan Cost Estimator

Query Plan Evaluator

Catalog Manager

Usually there is a
heuristics-based
rewriting step before
the cost-based steps.

Schema Statistics

Select *
From Blah B
Where B.blah = blah

Queries

1.19

 System R - Plans to Consider

For each block, plans considered are:

•  All available access methods, for each relation in
FROM clause.

•  All left-deep join trees

•  i.e., all ways to join the relations one-at-a-time,
considering all relation permutations and join
methods.
(note: system R originally only
had NL and Sort Merge)

B A

C

D

1.20

Highlights of System R Optimizer
■  Impact:

➹  Most widely used currently; works well for < 10 joins.

■  Cost estimation:
➹  Very inexact, but works ok in practice.
➹  Statistics, maintained in system catalogs, used to estimate cost of operations

and result sizes.
➹  Considers combination of CPU and I/O costs.

§  For simplicity we ignore CPU costs in this discussion
➹  More sophisticated techniques known now.

■  Plan Space: Too large, must be pruned.
➹  Only the space of left-deep plans is considered.
➹  Cartesian products avoided.

1.21

Queries Over Multiple Relations
■  Fundamental decision in System R: only left-deep join trees are

considered.
➹  As the number of joins increases, the number of alternative plans grows rapidly;

we need to restrict the search space.
➹  Left-deep trees allow us to generate all fully pipelined plans.

§  Intermediate results not written to temporary files.
§ Not all left-deep trees are fully pipelined (e.g., SM join).

B A

C

D

B A

C

D

C D B A

1.22

Enumeration: Dynamic Programming

■  Plans differ by: order of the N relations, access method for each relation,
and the join method for each join.
➹ maximum possible orderings = N! (but delay X-products)

■  Enumerated using N passes

■  For each subset of relations, retain only:
➹  Cheapest plan overall (possibly unordered), plus
➹  Cheapest plan for each interesting order of the tuples.

1.23

Enumeration: Dynamic Programming

■  Pass 1: Find best 1-relation plans for each relation.

■  Pass 2: Find best ways to join result of each 1-relation plan as outer to
another relation. (All 2-relation plans.)

consider all possible join methods & inner access paths

■  Pass N: Find best ways to join result of a (N-1)-rel’n plan as outer to the
N’th relation. (All N-relation plans.)

consider all possible join methods & inner access paths

1.24

 Interesting Orders

■ An intermediate result has an “interesting order” if
it is returned in order of any of:

u ORDER BY attributes
u GROUP BY attributes
u Join attributes of other joins

1.25

System R Plan Enumeration (Contd.)

■ An N-1 way plan is not combined with an additional
relation unless there is a join condition between
them, unless all predicates in WHERE have been
used up.
➹ i.e., avoid Cartesian products if possible.

■ ORDER BY, GROUP BY, aggregates etc. handled
as a final step, using either an `interestingly
ordered’ plan or an additional sorting operator.

■  In spite of pruning plan space, this approach is still
exponential in the # of tables.

■ COST = #IOs + (inst_per_IO * CPU Inst)

1.26

 Pass1:
Reserves: Clustered B+ tree on bid matches bid=100, and is cheaper than file

scan
Sailors: B+ tree matches rating>5, not very selective, and index is unclustered,

so file scan w/ select is likely cheaper. Also, Sailors.rating is not an interesting
order.

Indexes
Reserves:
 Clustered B+ tree on bid
Sailors:
 Unclust B+ tree on rating

Pass 2:We consider each Pass 1 plan as the outer:
 Reserves as outer (B+Tree selection on bid):

Use Sort Merge to join with Sailors as inner
 Sailors as outer (File Scan w/select on rating):

Use BNL on result of selection on Reserves.bid

Select S.sname
FROM Sailors S, Reserves R
WHERE S.sid = R.sid
 AND S.Rating > 5
 AND R.bid = 100

Example (modified from book ch 15)

1.27

Example (modified from book ch 15)

Sailors:
 B+ on sid
Reserves:
 Clustered B+ tree on bid
 B+ on sid
Boats
 Clustered Hash on color

Select S.sid, COUNT(*) AS numredres
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid
 AND B.color = “red”
GROUP BY S.sid

•  Pass1: Best plan(s) for accessing each relation
–  Sailors: File Scan; B+ on sid
–  Reserves: File Scan; B+ on bid, B+ on sid
–  Boats: Hash on color

(note: given selection on color, clustered Hash is likely to be cheaper than file
scan, so only it is retained)

1.28

Pass 2

■  For each of the plans in pass 1, generate plans joining another
relation as the inner (avoiding cross products).

■  Consider all join methods and every access path for the inner.
➹  File Scan Reserves (outer) with Boats (inner)
➹  File Scan Reserves (outer) with Sailors (inner)
➹  B+ on Reserves.bid (outer) with Boats (inner)
➹  B+ on Reserves.bid (outer) with Sailors (inner)
➹  B+ on Reserves.sid (outer) with Boats (inner)
➹  B+ on Reserves.sid (outer) with Sailors (inner)
➹  File Scan Sailors (outer) with Reserves (inner)
➹  B+Tree Sailors.sid (outer) with Reserves (inner)
➹  Hash on Boats.color (outer) with Reserves (inner)

■  Retain cheapest plan for each pair of relations plus cheapest plan for each
interesting order.

1.29

Pass 3

■  For each of the plans retained from Pass 2, taken
as the outer, generate plans for the remaining join
➹  e.g.

Outer= Hash on Boats.color JOIN Reserves
Inner = Sailors
Join Method = Index NL using Sailors.sid B+Tree

■  Then, add the cost for doing the group by and
aggregate:
➹ This is the cost to sort the result by sid,

unless it has already been sorted by a
previous operator.

■  Then, choose the cheapest plan overall

Reserves

Sailors

sid=sid

Boats

Sid, COUNT(*)

GROUPBY sid

bid=bid

Color=red

1.30

Nested Queries

■  Nested block is optimized independently,
with the outer tuple considered as providing
a selection condition.

■  Outer block is optimized with the cost of
`calling’ nested block computation taken into
account.

■  Implicit ordering of these blocks means that
some good strategies are not considered.
The non-nested version of the query is
typically optimized better.

SELECT S.sname
FROM Sailors S
WHERE EXISTS
 (SELECT *
 FROM Reserves R
 WHERE R.bid=103
 AND R.sid=S.sid)

 Nested block to optimize:
 SELECT *
 FROM Reserves R
 WHERE R.bid=103
 AND R.sid= outer value

Equivalent non-nested query:
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid
 AND R.bid=103

1.31

Points to Remember

■ Must understand optimization in order to understand
the performance impact of a given database design
(relations, indexes) on a workload (set of queries).

■ Two parts to optimizing a query:
q Consider a set of alternative plans.

§ Must prune search space; typically, left-deep plans only.
q Must estimate cost of each plan that is considered.

§ Must estimate size of result and cost for each plan node.
§ Key issues: Statistics, indexes, operator implementations.

1.32

Points to Remember

■  Single-relation queries:
➹ All access paths considered, cheapest is chosen.
➹  Issues: Selections that match index, whether index key has

all needed fields and/or provides tuples in a desired order.

1.33

More Points to Remember

■  Multiple-relation queries:
➹ All single-relation plans are first enumerated.

§ Selections/projections considered as early as possible.
➹ Next, for each 1-relation plan, all ways of joining another

relation (as inner) are considered.
➹ Next, for each 2-relation plan that is `retained’, all ways of

joining another relation (as inner) are considered, etc.
➹ At each level, for each subset of relations, only best plan for

each interesting order of tuples is `retained’.

1.34

Summary

■  Performance can be dramatically improved by changing access
methods, order of operators.

■  Iterator interface
■  Cost estimation

➹  Size estimation and reduction factors
■  Statistics and Catalogs
■  Relational Algebra Equivalences
■  Choosing alternate plans
■  Multiple relation queries
■  We focused on “System R”-style optimizers

➹  New areas: Rule-based optimizers, random statistical approaches
(eg simulated annealing), adaptive/dynamic optimization.

