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Introduction to Database Systems

Query Optimization Il



Review

B Implementation of Relational Operations as lterators
¥ Focus largely on External algorithms (sorting/hashing)
B Choices depend on indexes, memory, stats,...
B Joins
+" Blocked nested loops:
= simple, exploits extra memory
v Indexed nested loops:
= bestif 1 rel small and one indexed
v Sort/Merge Join
= good with small amount of memory, bad with duplicates
¥" Hash Join
= fast (enough memory), bad with skewed data
= Relatively easy to parallelize
B Sort and Hash-Based Aggs and DupElim
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Query Optimization Overview

B Query can be converted to relational algebra

B Rel. Algebra converted to tree, joins as branches
B Each operator has implementation choices

B Operators can also be applied in different order!

SELECT S.sname Tfs ame
FROM Reserves R, Sailors S T
WHERE R.sid=S.sid AND -

R.bid=100 AND S.rating>5 bid=100"" rating > 5

l><] sid=sid

T (sname)(O(bid=100 A rating > 5) (Reserves >< Sailors)) / \

Reserves Sailors
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Relational Algebra Equivalences

B Allow us to choose different operator orders and to push’ selections and
projections ahead of joins.

Ounna(R) = 0,(... 0, (R)) Cascade
Ocl(OCZ(R))E o (%(R)] (Commute)

+ Projections ;ral(R) 1( ( (R)) (Cascade)

(if an includes an-1 includes... al)

B Selections

@ JOINS: RiqSI<T) =(RIXIS] T (Associative)
(RIXIS) = (SIXR) (Commute)

These two mean we can do joins in any order.
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More Equivalences

A projection commutes with a selection that only uses attributes retained
by the projection.

Selection between attributes of the two arguments of a cross-product
converts cross-product to a join.

Projection Push: A projection applied to RN S can be pushed before the
join by retaining only attributes of R (and S) that are needed for the join or
are kept by the projection.
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The “System R” Query Optimizer

B Impact:

+~ Inspired most optimizers in use today

+~ Works well for small-med complexity queries (< 10 joins)
B Cost estimation:

+ Very inexact, but works ok in practice.

<~ Statistics, maintained in system catalogs, used to estimate cost of operations
and result sizes.

+~ Considers a simple combination of CPU and I/O costs.
+ More sophisticated techniques known now.
B Plan Space: Too large, must be pruned.

+~ Only the space of left-deep plans is considered.
+~ Cartesian products avoided.
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Cost Estimation

B To estimate cost of a plan:
+ Must estimate cost of each operation in plan tree and sum them up.

= Depends on input cardinalities.

< S0, must estimate size of result for each operation in tree!
= Use information about the input relations.
* For selections and joins, assume independence of predicates.

B |n System R, cost is boiled down to a single number consisting of
#1/0 ops + factor * #CPU instructions
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Statistics and Catalogs

B Need information about the relations and indexes involved.
Catalogs typically contain at least:
+ # tuples (NTuples) and # pages (NPages) per rel’'n.

# distinct key values (NValues) for each index.

low/high key values (Low/High) for each index.

Index height (IHeight) for each tree index.
# index pages (INPages) for each index.

B Stats in catalogs updated periodically.

<~ Updating whenever data changes is too expensive; lots of
approximation anyway, so slight inconsistency ok.

B More detailed information (e.g., histograms of the values in some field)
are sometimes stored.
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Size Estimation and Reduction Factors

B Consider a query block:

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

B Reduction factor (RF) associated with each ferm
reflects the impact of the term in reducing result size.

m RF is usually called “selectivity’.

m How to predict size of output?

<~ Need to know/estimate input size

v Need to know/estimate RFs

v Need to know/assume how terms are related
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Result Size Estimation for Selections

Result cardinality (for conjunctive terms) =
# input tuples * product of all RF’s.

Assumptions:
1. Values are uniformly distributed and terms are independent!
2. In System R, stats only tracked for indexed columns
(modern systems have removed this restriction)
Term col=value
RF = 1/NValues(l) (e.g. rating=5, RF = 1/10 (assume rating:[1,10])
Term col1=col2
RF = 1/MAX(NValues(l1), NValues(I2))
Term col>value
RF = (High(l)-value)/(High(l)-Low(l))

Note, In System R, if missing indexes, assume 1/10!!!
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Reduction Factors & Histograms

B For better RF estimation, many systems use histograms:

No. of Values 2 3 3 1 8 2 1
Value 0-.99 |1-1.992-2.99| 3-3.994-4.99| 5-5.99|6-6.99
equiwidth
No. of Values 3 3 3 3 3 3
Value 0-.99 11-1.99]|2-2.9913-4.05 |4.06-4.67 |4.68-4.99 |5-6.99

equidepth




Histograms and other Stats

B Postgres uses equidepth histograms (need to store just the
boundaries) and Most Common Values (MCV).

B Example:

most_common_vals |
{EJAAAA,BBAAAA,CRAAAA FCAAAA ,FEAAAA,GSAAAA,JOAAAA MCAAAA NAAAAA}

most_common_fregs | {0.00333333,0.003,0.003,0.003,0.003,0.003,0.003,0.003,0.003}

The estimator uses both histograms (for range queries) and MCVs
for exact match queries (equality).

Sometimes, we use both to estimate range queries and join results.

See more:

http://www.postgresql.org/docs/9.2/interactive/row-estimation-examples.html



Result Size estimation for joins

B Q: Given ajoin of R and S, what is the range of possible result sizes (in
#of tuples)?

¥+ Hint: what if R and S have no attributes in common?
¥ Join attributes are a key for R (and a Foreign Key in S)?

B General case: join attributes in common but a key for neither:

v estimate each tuple r of R generates NTuples(S)/NKeys(A,S) result tuples,
So result size estimate:

(NTuples(R) * NTuples(S)) / NValues(A,S)

¥ but can also can estimate each tuple s of S generates NTuples(R)/
NKeys(A,R) result tuples, so:

(NTuples(R) * NTuples(S)) / NValues(A,)
" If these two estimates differ, take the lower one!



Enumeration of Alternative Plans

B There are two main cases:
+~ Single-relation plans (unary ops) and Multiple-relation plans

B For unary operators:

+~ For a scan, each available access path (file scan / index) is considered, and the
one with the least estimated cost is chosen.

<+ consecutive Scan, Select, Project and Aggregate operations can be
essentially carried out together

(e.g., if an index is used for a selection, projection is done for each retrieved tuple,
and the resulting tuples are pipelined into the aggregate computation).



I/0 Cost Estimates for Single-Relation Plans

B Index | on primary key matches selection:
«~ Costis Height(l)+1 for a B+ tree, about 1.2 for hash index (or 2.2)

B Clustered index | matching one or more selects:

« (NPages(l)+NPages(R)) * product of RF’s of matching selects.
B Non-clustered index | matching one or more selects:

« (NPages(l)+NTuples(R)) * product of RF’s of matching selects.
B Sequential scan of file:

+ NPages(R).

Fy Must also charge for duplicate elimination if required



Schema for Examples

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

B Reserves:

+~ Each tuple is 40 bytes long, 100 tuples per page, 1000 pages. 100 distinct
bids.

B Sailors:

+~ Each tuple is 50 bytes long, 80 tuples per page, 500 pages. 10 Ratings,
40,000 sids.



SELECT S.sid

FROM sSailors S
Example WHERE S.rating=8

B If we have an ;
+~ Cardinality: (1/NKeys(l)) * NTuples(S) = (1/10) * 40000 tuples retrieved.

y (1/NKeys(l)) * (NPages(l)+NPages(S)) =
(1/NKeys(l)) * NPages(S)
s (1/NKeys(l)) * (NPages(l)+NTuples(S)) =

+~ Plus of course Height(l). Usually, 2-4 pages.
B If we have an ,

+ Would have to retrieve all tuples/pages. With a index, the
, with index, . No reason to use this index! (see
below)
B Doing a

+ We retrieve all file pages



Cost-based Query Sub-System

_ %Select *
Queries . From Blah B :
. Where B.blah = blah .
F ereseeeeommesomserossesesreesereesseeeommeseses s Usually there is a
< heuristics-based
rewriting step before
the cost-based steps.
Query Parser
Query Optimizer
= X

> | | Plan Generator Plan Cost Estimator Catalog Manager

- =
" o] e

Query Plan Evaluator




System R - Plans to Consider

For each block, plans considered are:

 All available access methods, for each relation in
FROM clause. >

 All /eft-deep join trees /

<] D
* i.e., all ways to join the relations one-at-a-time, \
considering all relation permutations and join
< C

methods.

(note: system R originally only / \
had NL and Sort Merge) K 5



Highlights of System R Optimizer

B Impact:
+~ Most widely used currently; works well for < 10 joins.

+ Very inexact, but works ok in practice.

<~ Statistics, maintained in system catalogs, used to estimate cost of operations
and result sizes.

+~ Considers combination of CPU and I/O costs.
« For simplicity we ignore CPU costs in this discussion
+ More sophisticated techniques known now.

O Too large, must be pruned.
<+ Only the space of is considered.
+~ Cartesian products avoided.
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Queries Over Multiple Relations

B Fundamental decision in System R: are
considered.

+~ As the number of joins increases, the number of alternative plans grows rapidly;
we need to restrict the search space.

+~ Left-deep trees allow us to generate all

» Intermediate results not written to temporary files.
= Not all left-deep trees are fully pipelined (e.g., SM join).




Enumeration: Dynamic Programming

B Plans differ by: order of the N relations, access method for each relation,
and the join method for each join.

¥ maximum possible orderings = N! (but delay X-products)
B Enumerated using N passes

B For each subset of relations, retain only:
+~ Cheapest plan overall (possibly unordered), plus
+ Cheapest plan for each of the tuples.
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Enumeration: Dynamic Programming

O Find best 1-relation plans for each relation.

] Find best ways to join result of each 1-relation plan as outer to
another relation.

L] Find best ways to join result of a (N-1)-rel’n plan as outer to the
N’th relation.
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Interesting Orders

B An intermediate result has an “interesting order” if
it is returned in order of any of:

¢ ORDER BY attributes
© GROUP BY attributes
¥ Join attributes of other joins
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System R Plan Enumeration (Contd.)

B An N-1 way plan is not combined with an additional
relation unless there is a join condition between
them, unless all predicates in WHERE have been
used up.

7 1.e.,

O etc. handled
as a final step, using either an "interestingly
ordered’ plan or an additional sorting operator.

M |n spite of pruning plan space, this approach is
in the # of tables.

B COST = #10s + (inst_per_lIO * CPU Inst)
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Example (modified from book ch 15)

Select S.sname Indexes
FROM Sailors S, Reserves R Reserves:
WHERE S.sid = R.sid Clustered B+ tree on bid

AND S.Rating > 5

. Sailors:
AND R.bid = 100

Unclust B+ tree on rating

Clustered B+ tree on bid matches bid=100, and is cheaper than file
scan

B+ tree matches rating>5, not very selective, and index is unclustered,
so file scan w/ select is likely cheaper. Also, Sailors.rating is not an interesting
order.

We consider each Pass 1 plan as the outer:
Use Sort Merge to join with Sailors as inner

Use BNL on result of selection on Reserves.bid
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Example (modified from book ch 15)

Select S.sid, COUNT(*) AS numredres Sallors: .
B+ on sid
FROM Sailors S, Reserves R, Boats B Reserves:
WHERE S.sid = R.sid AND R.bid = B.bid Clustered B+ tree on bid
AND B.color = “red” B+ on sid
GROUP BY S.sid Boats
Clustered Hash on color

e Passl: Best plan(s) for accessing each relation
— Sailors: File Scan; B+ on sid
— Reserves: File Scan; B+ on bid, B+ on sid
— Boats: Hash on color

(note: given selection on color, clustered Hash is likely to be cheaper than file
scan, so only it is retained)
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Pass 2

B For each of the plans in pass 1, generate plans joining another
relation as the inner (avoiding cross products).

B Consider all join methods and every access path for the inner.
v File Scan Reserves (outer) with Boats (inner)
v File Scan Reserves (outer) with Sailors (inner)
v" B+ on Reserves.bid (outer) with Boats (inner)
v" B+ on Reserves.bid (outer) with Sailors (inner)
v" B+ on Reserves.sid (outer) with Boats (inner)
v" B+ on Reserves.sid (outer) with Sailors (inner)
v File Scan Sailors (outer) with Reserves (inner)
v' B+Tree Sailors.sid (outer) with Reserves (inner)
¥ Hash on Boats.color (outer) with Reserves (inner)

B Retain cheapest plan for each pair of relations plus cheapest plan for each
interesting order.
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Pass 3

For each of the plans retained from Pass 2, taken M
Sid, COUNT(*)

as the outer, generate plans for the remaining join
‘eg |
Outer= Hash on Boats.color JOIN Reserves GROUPBY
Inner = Sailors [>|<]
Join Method = Index NL using Sailors.sid B+Tree sid=sid
Then, add the cost for doing the group by and b%ﬂﬁ \Sa"ors
aggregate:
+ This is the cost to sort the result by sid, 0 Reserves

unless it has already been sorted by a

Color=red
previous operator. T

Boats
Then, choose the cheapest plan overall
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Nested Queries

B Nested block is optimized independently,

with the outer tuple considered as providing

a selection condition.

B Outer block is optimized with the cost of

“calling’ nested block computation taken into

account.

B Implicit ordering of these blocks means that
some good strategies are not considered.
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SELECT S.sname
FROM sSailors S

(SELECT ~
FROM Reserves R
WHERE R.bid=103
AND R.sid=S.sid)

Nested block to optimize:
SELECT -~
FROM Reserves R
WHERE R.bid=103

AND R:.sid= outer value

Equivalent non-nested query:
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

AND R.bid=103




Points to Remember

B Must understand optimization in order to understand
the performance impact of a given database design
(relations, indexes) on a workload (set of queries).

B Two parts to optimizing a query:

0 Consider a set of alternative plans.
» Must prune search space; typically, left-deep plans only.
0 Must estimate cost of each plan that is considered.
* Must estimate size of result and cost for each plan node.
» Key issues: Statistics, indexes, operator implementations.
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Points to Remember

B Single-relation queries:
< All access paths considered, cheapest is chosen.

+ Issues: Selections that match index, whether index key has
all needed fields and/or provides tuples in a desired order.
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More Points to Remember

B Multiple-relation queries:
< All single-relation plans are first enumerated.
= Selections/projections considered as early as possible.

<~ Next, for each 1-relation plan, all ways of joining another
relation (as inner) are considered.

+~ Next, for each 2-relation plan that is retained’, all ways of
joining another relation (as inner) are considered, etc.

+~ At each level, for each subset of relations, only best plan for
each interesting order of tuples is retained’.
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Summary

Performance can be dramatically improved by changing access
methods, order of operators.

lterator interface

Cost estimation
¥+ Size estimation and reduction factors

Statistics and Catalogs
Relational Algebra Equivalences
Choosing alternate plans
Multiple relation queries

We focused on “System R”-style optimizers

v" New areas: Rule-based optimizers, random statistical approaches
(eg simulated annealing), adaptive/dynamic optimization.
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