
CAS	 CS	 460/660	
Data	 Base	 Design	

	
En3ty/Rela3onship	 Model	

Describing Data: Data Models
•  Data model : collection of concepts for describing

data.

•  Schema: description of a particular collection of
data, using a given data model.

•  Relational model of data
–  Main concept: relation (table), rows and columns
–  Every relation has a schema

•  describes the columns
•  column names and domains

Levels of Abstraction
•  Views describe how users

see the data.

•  Conceptual schema defines
logical structure

•  Physical schema describes
the files and indexes used.

Physical Schema

Conceptual Schema

View 1 View 2 View 3

DB

Example: University Database
•  Conceptual schema:

–  Students(sid text, name text,
 login text, age integer,
 gpa float)

–  Courses(cid text, cname text,
 credits integer)

–  Enrolled(sid text, cid text,
 grade text)

•  Physical schema:
–  Relations stored as unordered files.
–  Index on first column of Students.

•  External Schema (View):
–  Course_info(cid text,

 enrollment integer)

Data Independence
•  Insulate apps from structure of data

•  Logical data independence:
– Protection from changes in logical structure

•  Physical data independence:
– Protection from changes in physical structure

•  Q: Why particularly important for DBMS?

Because databases and their
associated applications persist.

Data Models

•  Connect concepts to bits!
•  Many models exist
•  We will ground ourselves

in the Relational model
–  clean and common
–  generalization of key/value

•  Entity-Relationship model
also handy for design
–  Translates down to

Relational 10101
11101

Student (sid: string, name: string, login:
string, age: integer, gpa:real)

Entity-Relationship Model

•  Relational model is a great formalism
– and a clean system framework

•  But a bit detailed for design time
– a bit fussy for brainstorming
– hard to communicate to customers

•  Entity-Relationship model is a popular
“shim” over relational model
– graphical, slightly higher level

Steps in Traditional Database
Design

•  Requirements Analysis
–  user needs; what must database do?

•  Conceptual Design
–  high level description (often done w/ER model)

•  Logical Design
–  translate ER into DBMS data model

•  Schema Refinement
–  consistency, normalization

•  Physical Design - indexes, disk layout
•  Security Design - who accesses what, and how

Conceptual Design

•  What are the entities and relationships?

•  What info about E’s & R’s should be in DB?

•  What integrity constraints (business rules) hold?

•  ER diagram is the “schema”

•  Can map an ER diagram into a relational schema.

ER Model Basics

•  Entity:
–  A real-world object described by a set of attribute

values.

•  Entity Set: A collection of similar entities.
–  E.g., all employees.
–  All entities in an entity set have the same attributes.
–  Each entity set has a key (underlined)
–  Each attribute has a domain

Employees	

ssn	
name	

lot	

ER Model Basics (Contd.)

•  Relationship: Association among two or more
entities.
–  E.g., Attishoo works in Pharmacy department.
–  relationships can have their own attributes.

•  Relationship Set: Collection of similar relationships.
–  An n-ary relationship set R relates n entity sets E1 ... En ;

each relationship in R involves entities e1 ∈ E1, ..., en ∈ En

lot	

name	

Employees	

ssn	

Works_In	

since	
dname	

budget	 did	

Departments	

ER Model Basics
(Cont.)

•  Same entity set can participate in
different relationship sets, or in different
“roles” in the same relationship set.

subor-‐
dinate	 	

super-‐
visor	

Reports_To	

since	

Works_In	

dname	

budget	 did	

Departments	

lot	

name	

Employees	

ssn	

Key Constraints

 An employee can
work in many
departments; a
dept can have
many employees.

1-‐to-‐1	 Many-‐to-‐
Many	

since	

Manages	

dname	

budget	 did	

Departments	

since	

Works_In	

lot	

name	

ssn	

Employees	

In contrast, each dept
has at most one
manager, according
to the key constraint
on Manages.

1-‐to-‐
Many	

Many-‐
to-‐1	

Participation Constraints
•  Does every employee work in a department?
•  If so: a participation constraint

–  participation of Employees in Works_In is total (vs. partial)
–  What if every department has an employee working in it?

•  Basically means “at least one”

lot	
name	 dname	

budget	 did	

since	
name	 dname	

budget	 did	

since	

Manages	

since	

Departments	 Employees	

ssn	

Works_In	

or	

Alternative: Crow’s Foot
Notation

Summary so far

•  Entities and Entity Set (boxes)
•  Relationships and Relationship sets (diamonds)
•  Key constraints (arrows)
•  Participation constraints (bold for Total)

These are enough to get started, but we’ll need

more…

Weak Entities
A weak entity can be identified uniquely only by considering the

primary key of another (owner) entity.
–  Owner entity set and weak entity set must participate in a one-

to-many relationship set (one owner, many weak entities).
–  Weak entity set must have total participation in this identifying

relationship set.

lot	

name	

age	 pname	

Dependents	 Employees	

ssn	

Policy	

cost	

Weak entities have only a “partial key” (dashed underline)

Binary vs. Ternary Relationships

If each policy is owned
by just 1 employee:

Beneficiary	

age	 pname	

Dependents	

policyid	 cost	

Policies	

Purchaser	

name	

Employees	

ssn	 lot	

Be&er	 design	

•  Think through all
the constraints in
the 2nd diagram!

Policies	

policyid	 cost	

age	 pname	

Dependents	 Covers	

name	

Employees	

ssn	 lot	

 Key constraint on
Policies would
mean policy can
only cover 1
dependent!

Binary vs. Ternary Relationships (Contd.)

•  Previous example:
–  2 binary relationships better than 1 ternary relationship.

•  An example in the other direction:
–  ternary relationship set Contracts relates entity sets Parts,

Departments and Suppliers
–  relationship set has descriptive attribute qty.
–  no combo of binary relationships is a substitute!

•  See next slide…

Binary vs. Ternary Relationships (Contd.)

–  S “can-supply” P, D “needs” P, and D “deals-with” S does not
imply that D has agreed to buy P from S.

–  How do we record qty?

Suppliers	

qty	

Departments	 Contract	 Parts	

Suppliers	

Departments	

deals-‐with	

Parts	

can-‐supply	

VS.

needs	

Aggregation

Allows relationships with relationship sets.

un3l	

Employees	

Monitors	

lot	
name	

ssn	

budget	 did	 pid	

started_on	

pbudget	
dname	

Departments	 Projects	 Sponsors	

since	

E/R	 Data	 Model	
Extensions	 to	 the	 Model:	 	 Aggrega3on	

■  E/R:	 	 No	 rela3onships	 between	 rela3onships	

➹  E.g.:	 	 Associate	 loan	 officers	 with	 Borrows	 rela3onship	 set	

Customers Loans Borrows

Employees

Loan_Officer

?

■  Associate	 Loan	 Officer	 with	 Loan?	

➹ What	 if	 we	 want	 a	 loan	 officer	 for	 every	 (customer,	 loan)	 pair?	

E/R	 Data	 Model	
Extensions	 to	 the	 Model:	 	 Aggrega3on	

■  E/R:	 	 No	 rela3onships	 between	 rela3onships	

➹  E.g.:	 	 Associate	 loan	 officers	 with	 Borrows	 rela3onship	 set	

Customers Loans Borrows

Employees

Loan_Officer

■  Associate	 Loan	 Officer	 with	 Borrows?	

➹ Must	 First	 Aggregate	

E/R	 Data	 Model	
Extensions	 to	 the	 Model:	 	 Specializa3on	 and	 Generaliza3on	

■  An	 Example:	
➹  Customers	 can	 have	 checking	 and	 savings	 accts	

➹  Checking	 ~	 Savings	 (many	 of	 the	 same	 a&ributes)	

■  Old	 Way:	

Customers Has1 Savings Accts

acct_no balance interest

Has2 Checking Accts

acct_no balance overdraft

E/R	 Data	 Model	
Extensions	 to	 the	 Model:	 	 Specializa3on	 and	 Generaliza3on	

Customers Has Accounts

acct_no balance

Checking Accts

overdraft interest

Savings Accts

■  An	 Example:	
➹  Customers	 can	 have	 checking	 and	 savings	 accts	

➹  Checking	 ~	 Savings	 (many	 of	 the	 same	 a&ributes)	

■  New	 Way:	

superclass

subclasses

ISA	

Conceptual Design Using the ER Model

•  ER modeling can get tricky!
•  Design choices:

–  Entity or attribute?
–  Entity or relationship?
– Relationships: Binary or ternary? Aggregation?

•  ER Model goals and limitations:
–  Lots of semantics can (and should) be captured.
–  Some constraints cannot be captured in ER.

•  We’ll refine things in our logical (relational) design

Entity vs. Attribute

•  “Address”:
–  attribute of Employees?
–  Entity of its own?

•  It depends! Semantics and usage.
–  Several addresses per employee?

•  must be an entity
•  atomic attribute types (no set-valued attributes!)

–  Care about structure? (city, street, etc.)
•  must be an entity!
•  atomic attribute types (no tuple-valued attributes!)

Entity vs. Attribute (Cont.)

•  Works_In2: employee
cannot work in a
department for >1
period.

•  Like multiple addresses
per employee!

name	

Employees	

ssn	 lot	

Works_In2	

from	 to	
dname	

budget	 did	

Departments	

dname	
budget	 did	

name	

Departments	

ssn	 lot	

Employees	 Works_In3	

Dura3on	 from	 to	

Entity vs. Relationship
•  Separate

discretionary budget
(dbudget) for each
dept.

•  What if manager’s
dbudget covers all
managed depts
–  Could repeat value
–  But redundancy =

problems

•  Better design:

Manages2	

name	 dname	
budget	 did	

Employees	 Departments	

ssn	 lot	

dbudget	 since	

Employees	

since	

name	

dname	
budget	 did	

Departments	

ssn	 lot	

Mgr_Appts	

is_manager	

dbudget	
apptnum	

managed_by	

E-R Diagram as Wallpaper

•  Very common for them to be wall-sized

Converting ER to Relational

•  Fairly analogous structure
•  But many simple concepts in ER are subtle

to specify in relations

lot	

name	

Employees	

ssn	

Works_In	

since	
dname	

budget	 did	

Departments	

Logical DB Design: ER to Relational
•  Entity sets to tables.

	 CREATE TABLE Employees
 (ssn VARCHAR(11),
 name CHAR(20),
 lot INTEGER,
 PRIMARY KEY (ssn));

Employees	

ssn	
name	

lot	

ssn	 name	 lot	

123-22-3666	 Attishoo	 48	

231-31-5368	 Smiley	 22	

131-24-3650	 Smethurst	 35	

Relationship Sets to Tables
•  In translating a many-to-

many relationship set to
a relation, attributes of
the relation must
include:
1) Keys for each

participating entity set
(as foreign keys). This set
of attributes forms a key
for the relation.

2) All descriptive attributes.

CREATE TABLE Works_In(
 ssn VARCHAR(11),
 did INTEGER,
 since DATE,
 PRIMARY KEY (ssn, did),
 FOREIGN KEY (ssn)
 REFERENCES Employees(ssn),
 FOREIGN KEY (did)
 REFERENCES Departments(did));

ssn	 did	 since	
123-22-3666	 51	 1/1/91	

123-22-3666	 56	 3/3/93	

231-31-5368	 51	 2/2/92	

Example	 of	 Foreign	 Keys	
CREATE TABLE Students
 (sid CHAR(20),
 name CHAR(20),
 login CHAR(10),
 age INTEGER,
 gpa FLOAT);

CREATE TABLE Enrolled
 (sid CHAR(20),
 cid CHAR(20),
 grade CHAR(2),

 PRIMARY KEY (sid, cid),
 FOREIGN KEY (sid)
 REFERENCES Students(sid));

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

Students cid grade sid
Carnatic101 C 53666
Reggae203 B 53666
Topology112 A 53650
History105 B 53666

Enrolled

Review: Key Constraints
•  Each dept has at

most one manager,
according to the
key constraint on
Manages.

Transla'on	 to	 	
rela'onal	 model?	

Many-‐to-‐Many	 1-‐to-‐1	 1-‐to	 Many	 Many-‐to-‐1	

dname	

budget	 did	

since	

lot	

name	

ssn	

Manages	 Employees	 Departments	

Translating ER with Key Constraints

•  Since each department has a unique manager,
 we could instead combine Manages and Departments.

dname	
budget	 did	

since	

lot	
name	

ssn	

Manages	 Employees	 Departments	

	 CREATE TABLE Employees
 (ssn CHAR(11),
 name CHAR(20),
 lot INTEGER,
 PRIMARY KEY (ssn));

CREATE TABLE Manages(
 ssn CHAR(11),
 did INTEGER,
 since DATE,
 PRIMARY KEY (did),
 FOREIGN KEY (ssn)
REFERENCES Employees(ssn),
 FOREIGN KEY (did)
REFERENCES Departments(did));

	 CREATE TABLE Departments
 (did INTEGER,
 dname CHAR(20),
 budget REAL,
 PRIMARY KEY (did));

OR	
	 CREATE TABLE Employees
 (ssn CHAR(11),
 name CHAR(20),
 lot INTEGER,
 PRIMARY KEY (ssn));

CREATE TABLE Dept_Mgr(
 did INTEGER,
 dname CHAR(20),
 budget REAL,
 ssn CHAR(11),
 since DATE,
 PRIMARY KEY (did),
 FOREIGN KEY (ssn)
 REFERENCES Employees)

Review: Participation Constraints
•  Does every department have a manager?

–  If so, this is a participation constraint: the participation of
Departments in Manages is said to be total (vs. partial).

•  Every did value in Departments table must appear in a row of the
Manages table (with a non-null ssn value!)

lot	
name	 dname	

budget	 did	

since	
name	 dname	

budget	 did	

since	

Manages	

since	

Departments	 Employees	

ssn	

Works_In	

Participation Constraints in SQL

•  We can capture participation constraints involving one entity
set in a binary relationship, but little else (without resorting to
CHECK constraints).

CREATE TABLE Dept_Mgr(
 did INTEGER,
 dname CHAR(20),
 budget REAL,
 ssn CHAR(11) NOT NULL,
 since DATE,
 PRIMARY KEY (did),
 FOREIGN KEY (ssn) REFERENCES Employees(ssn)
 ON DELETE NO ACTION)

Review: Weak Entities

•  A weak entity can be identified uniquely only by considering
the primary key of another (owner) entity.
–  Owner entity set and weak entity set must participate in a one-to-many

relationship set (1 owner, many weak entities).
–  Weak entity set must have total participation in this identifying

relationship set.

lot	

name	

age	 pname	

Dependents	 Employees	

ssn	

Policy	

cost	

Translating Weak Entity Sets
•  Weak entity set and identifying relationship

set are translated into a single table.
–  When the owner entity is deleted, all owned weak

entities must also be deleted.

CREATE TABLE Dep_Policy (
 pname CHAR(20),
 age INTEGER,
 cost REAL,
 ssn CHAR(11) NOT NULL,
 PRIMARY KEY (pname, ssn),
 FOREIGN KEY (ssn) REFERENCES Employees
 ON DELETE CASCADE)

Summary of Conceptual Design
•  Conceptual design follows requirements analysis,

–  Yields a high-level description of data to be stored
–  You may want to postpone it for read-only “schema on use”

•  ER model popular for conceptual design
–  Constructs are expressive, close to the way people think about their

applications.
–  Note: There are many variations on ER model

•  Both graphically and conceptually

•  Basic constructs: entities, relationships, and attributes (of
entities and relationships).

•  Some additional constructs: weak entities, ISA hierarchies,
and aggregation.

Summary of ER (Cont.)
•  Several kinds of integrity constraints:

– key constraints
– participation constraints

•  Some foreign key constraints are also implicit in
the definition of a relationship set.

•  Many other constraints (notably, functional
dependencies) cannot be expressed.

•  Constraints play an important role in determining
the best database design for an enterprise.

Summary of ER (Cont.)
•  ER design is subjective. There are often many

ways to model a given scenario!
•  Analyzing alternatives can be tricky, especially for

a large enterprise. Common choices include:
–  Entity vs. attribute, entity vs. relationship, binary or n-

ary relationship, whether or not to use ISA hierarchies,
aggregation.

•  Ensuring good database design: resulting
relational schema should be analyzed and refined
further.
–  Functional Dependency information and normalization

techniques are especially useful.

Modern pattern: “Schema on Use”

•  What about more agile, less governed environments?
•  Don’t let the lack of schema prevent storing data!

–  Just use binary, text, CSV, JSON, xlsx, etc.
–  Can shove into a DBMS, or just a filesystem (e.g. HDFS)
–  Most database engines can query files directly these days

•  Wrangle the data into shape as needed
–  Essentially defining views over the raw data
–  This amounts to database design, at the view level
–  What about integrity constraints?

•  Instead, define “anomaly indicator” columns – or queries

•  Fits well with read/append-only data
–  E.g. Big Data, a la Hadoop
–  Less of a fit with update-heavy data

•  Analogies to strong vs. loose typing in PL

