FUNCTIONAL DEPENDENCIES
Functional Dependencies

An example:

<table>
<thead>
<tr>
<th>bname</th>
<th>lno</th>
<th>cname</th>
<th>amt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downtown</td>
<td>L-170</td>
<td>Jones</td>
<td>1000</td>
</tr>
<tr>
<td>Downtown</td>
<td>L-170</td>
<td>Smith</td>
<td>1000</td>
</tr>
<tr>
<td>Redwood</td>
<td>L-230</td>
<td>Turner</td>
<td>1000</td>
</tr>
<tr>
<td>Perry</td>
<td>L-234</td>
<td>Hayes</td>
<td>1500</td>
</tr>
<tr>
<td>Redwood</td>
<td>L-13</td>
<td>Johnson</td>
<td>1000</td>
</tr>
</tbody>
</table>

Observe:
- tuples with the same value for lno will always have the same value for amt

We write: \(lno \rightarrow amt \) (lno “determines” amt, or
amt is functional determined by lno)

True or false?

- \(amt \rightarrow lno \)?
- \(lno \rightarrow c\name \)?
- \(lno \rightarrow b\name \)?
- \(b\name \rightarrow lno \)?

can’t always decide by looking at populated db’s
In general:

\[A_1 \ A_2 \ \ldots \ A_n \rightarrow B \]

Formally:

if 2 tuples “agree” on their values for \(A_1, A_2, \ldots, A_n \) they will also agree on their values for \(B \)

Formally:

\[\forall t, u: \]

\[(t[A_1] = u[A_1] \land t[A_2] = u[A_2] \land \ldots \land t[A_n] = u[A_n]) \implies t[B] = u[B] \]
How do we decide what constraints to impose?

Consider loan-info(bname, lno, cname, amt) with FDs:
 lno \rightarrow bname

How do we ensure that lno \rightarrow bname?

CREATE ASSERTION lno-bname
 CHECK (NOT EXIST
 (SELECT *
 FROM loan-info l1, loan-info l2
 WHERE ?))

? == l1.lno = l2.lno AND l1.bname \not= l2.bname

FD’s tell us what global constraints to impose....
How to derive them?

(1) Key constraints (e.g.: bname a key for branch
 bname → bname
 bname → bcity
 bname → assets)
 we can write: bname → bname bcity assets

Q: Define “superkeys” in terms of FD’s:
 A: Any set of attributes in a relation that functionally determines all
 attributes in the relation

Q: Define “candidate key” in terms of FD’s:
 A: Any superkey such that the removal of any attribute leaves a set
 that does not functionally determine all attributes.
Functional Dependencies

How to derive them?
(1) Key constraints
(2) Laws of physics.... e.g.: time room → course

(3) Trial-and-error...
 Given R=(A, B, C) try each of the following to see if they make sense:
 A → B AB → C
 A → C AC → B
 B → A BC → A

 What about: AB → A ?
 B → B ?

 Just say:
 ...plus all of the trivial dependencies
(2) Avoiding the expense
Recall: Lno \rightarrow bname preserved by:

```
CREATE ASSERTION Lno-bname
  CHECK ( NOT EXIST
    (SELECT *
      FROM loan-info l1, loan-info l2
      WHERE l1.Lno = l2.Lno AND
      l1.bname <> l2.bname))
```

Is it necessary to have an assertion for every FD’s?

Ans: Luckily, no. Can preprocess FD set

- some FD’s can be eliminated
- some FD’s can be combined
Functional Dependencies

Combining FD’s:

a. cname \(\rightarrow \) ccity

CREATE ASSERTION name-city
CHECK (NOT EXIST
(SELECT *
FROM customer c1, customer c2
WHERE c1.cname = c2.cname AND
 c1.ccity <> c2.ccity))

b. cname \(\rightarrow \) cstreet

CREATE ASSERTION name-street
CHECK (NOT EXIST
(SELECT *
FROM customer c1, customer c2
WHERE c1.cname = c2.cname AND
 c1.cstreet <> c2.cstreet))

combine into: cname \(\rightarrow \) ccity cstreet

CREATE ASSERTION name-city-street
CHECK (NOT EXIST
(SELECT *
FROM customer c1, customer c2
WHERE c1.cname = c2.cname AND
 ??))

?? =

((c1.ccity <> c2.ccity) OR
 (c1.cstreet <> c2.cstreet))
Determining unnecessary FD’s:

Consider $\text{cname} \rightarrow \text{cname}$

```sql
CREATE ASSERTION name-name
CHECK ( NOT EXIST
(SELECT *
FROM customer c1, customer c2
WHERE c1.cname = c2.cname AND
    c1.cname <> c2.cname))
```

cannot possibly be violated!

Note: $X \rightarrow Y$ s.t. $Y \subseteq X$
a “trivial dependency” (true, regardless of attributes involved)

So: Don’t create assertions for trivial dependencies
Determining unnecessary FD's: even non-trivial FD's can be unnecessary

e.g. a. Ino → bname

CREATE ASSERTION Ino-bname
CHECK (NOT EXIST
(SELECT *
FROM loan-info l1, loan-info l2
WHERE l1.Ino = l2.Ino AND
l1.bname <> l2.bname))

b. bname → assets

CREATE ASSERTION bname-assets
CHECK (NOT EXIST
(SELECT *
FROM loan-info l1, loan-info l2
WHERE l1.bname = l2.bname AND
l1.assets <> l2.assets))
c. Ino→assets

CREATE ASSERTION Ino-bname
CHECK (NOT EXIST
(SELECT *
FROM loan-info l1, loan-info l2
WHERE l1.Ino = l2.Ino AND
l1.assets <> l2.assets))

But if (a) and (b) succeed, then c must also
Functional Dependencies

Using FD’s to determine global IC’s:

Step 1: Given schema $R = \{A_1, ..., A_n\}$
 use key constraints, laws of physics, trial-and-error, etc ...
 to determine an initial FD set, F.

Step 2: Use FD elimination techniques to generate an alternative (but equivalent) FD set, F'

Step 3: Write assertions for each f in F' . (for now)

Issues:
(1) How do we guarantee that $F = F'$?
 ans: closures
(2) How do we find a “minimal” $F' = F$?
 ans: minimal (canonical) cover algorithm
Example:
suppose R = \{ A, B, C, D, E, H\} and we determine that:
\[
F = \{ A \rightarrow BC, \\
 B \rightarrow CE, \\
 A \rightarrow E, \\
 AC \rightarrow H, \\
 D \rightarrow B \}
\]

Then we determine the minimal cover of F:
\[
F_c = \{ A \rightarrow BH, \\
 B \rightarrow CE, \\
 D \rightarrow B \}
\]
ensuring that F and F_c are equivalent

Note: F requires 5 assertions
F_c requires 3 assertions
Functional Dependencies

Equivalence of FD sets:

FD sets F and G are equivalent if the imply the same set of FD’s

 e.g. A → B and B → C : implies A → C

equivalence usually expressed in terms of closures

Closures:
 For any FD set, F, F^+ is the set of all FD’s implied by F.
 can calculate in 2 ways:
 (1) Attribute Closure
 (2) Armstrong’s axioms

Both techniques tedious-- will do only for toy examples

F equivalent to G iff F^+ = G^+
Given:

\[R = \{A, B, C, D, E, H\} \text{ and:} \]
\[F = \{A \rightarrow BC, \]
\[B \rightarrow CE, \]
\[A \rightarrow E, \]
\[AC \rightarrow H, \]
\[D \rightarrow B\} \]

What is the closure of \(CD\) (\(CD^+\))?

Algorithm `att-closure (X: set of Attributes)`

1. Result \(\leftarrow X\)
2. repeat until stable
 1. for each FD in \(F\), \(Y \rightarrow Z\), do
 1. if \(Y \subseteq \text{Result}\) then
 1. Result \(\leftarrow\) Result \(\cup Z\)

<table>
<thead>
<tr>
<th>Iteration</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>C D</td>
</tr>
<tr>
<td>1</td>
<td>C D B</td>
</tr>
<tr>
<td>2</td>
<td>C D B E</td>
</tr>
</tbody>
</table>
Q: what is ACD$^+$?
 Ans: ACD$^+$ \rightarrow R

Q: How do you determine if ACD is a superkey?
 Ans: it is if ACD$^+$ \rightarrow R

Q: How can you determine if ACD is a candidate key?
 Ans: It is if:
 ACD$^+$ \rightarrow R
 AC$^+$ $\not\rightarrow$ R
 AD$^+$ $\not\rightarrow$ R not true => AD is a candidate key
 CD$^+$ $\not\rightarrow$ R

Given:
R = { A, B, C, D, E, H} and:
F = { A → BC,
B → CE,
A → E,
AC → H,
D → B}

F⁺ = { A → A+,
B → B+,
C → C+,
D → D+,
E → E+,
H → H+,
AB → AB+,
AC → AC+,
AD → AD+,
......}

To decide if F,G are equivalent:
(1) Compute F⁺
(2) Compute G⁺
(3) Is (1) = (2) ?

Expensive: F⁺ has 63 rules (in general: 2^|R| - 1 rules)
FD Closures Using Armstrong’s Axioms

A. Fundamental Rules (W, X, Y, Z: sets of attributes)
 1. Reflexivity
 If \(Y \subseteq X \) then \(X \rightarrow Y \)
 2. Augmentation
 If \(X \rightarrow Y \) then \(WX \rightarrow WY \)
 3. Transitivity
 If \(X \rightarrow Y \) and \(Y \rightarrow Z \) then \(X \rightarrow Z \)

B. Additional rules (can be proved from A)
 4. UNION: If \(X \rightarrow Y \) and \(X \rightarrow Z \) then \(X \rightarrow YZ \)
 5. Decomposition: If \(X \rightarrow YZ \) then \(X \rightarrow Y, X \rightarrow Z \)
 6. Pseudotransitivity: If \(X \rightarrow Y \) and \(WY \rightarrow Z \) then \(WX \rightarrow Z \)
FD Closures Using Armstrong’s Axioms

Given:

\[F = \{ A \rightarrow BC, \quad (1) \]
\[B \rightarrow CE, \quad (2) \]
\[A \rightarrow E, \quad (3) \]
\[AC \rightarrow H, \quad (4) \]
\[D \rightarrow B \} \quad (5) \]

Exhaustively apply Armstrong’s axioms to generate \(F^+ \)

\[F^+ = F \cup \]
1. \(\{ A \rightarrow B, \ A \rightarrow C \} \): decomposition on (1)
2. \(\{ A \rightarrow CE \} \): transitivity to 1.1 and (2)
3. \(\{ B \rightarrow C, \ B \rightarrow E \} \): decomp to (2)
4. \(\{ A \rightarrow C, \ A \rightarrow E \} \) decomp to 2
5. \(\{ A \rightarrow H \} \) pseudotransitivity to 1.2 and (4)
Our goal:
given a set of FD set, F, find an alternative FD set, G that is:
 smaller
 equivalent

Bad news:
Testing $F = G$ ($F^+ = G^+$) is computationally expensive

Good news:
Minimal Cover (or Canonical Cover) algorithm:
given a set of FD, F, finds minimal FD set equivalent to F

Minimal: can’t find another equivalent FD set w/ fewer FD’s
Minimal Cover Algorithm

Given:

\[
F = \{ A \rightarrow BC, \\
 B \rightarrow CE, \\
 A \rightarrow E, \\
 AC \rightarrow H, \\
 D \rightarrow B \}
\]

Determines minimal cover of F:

\[
F_c = \{ A \rightarrow BH, \\
 B \rightarrow CE, \\
 D \rightarrow B \}
\]

- \(F_c = F \)
- No G that is equivalent to F and is smaller than \(F_c \)

Another example:

\[
F = \{ A \rightarrow BC, \\
 B \rightarrow C, \\
 A \rightarrow B, \\
 AB \rightarrow C, \\
 AC \rightarrow D \}
\]

MC Algorithm

\[
F_c = \{ A \rightarrow BD, \\
 B \rightarrow C \}
\]
Minimal Cover Algorithm

Basic Algorithm

ALGORITHM MinimalCover (X: FD set)
BEGIN
 REPEAT UNTIL STABLE
 (1) Where possible, apply UNION rule (A’s axioms)
 (e.g., A \(\rightarrow\) BC, A \(\rightarrow\) CD becomes A \(\rightarrow\) BCD)
 (2) remove “extraneous attributes” from each FD
 (e.g., AB \(\rightarrow\) C, A \(\rightarrow\) B becomes
 A \(\rightarrow\) B, B \(\rightarrow\) C
 i.e., A is extraneous in AB \(\rightarrow\) C)
Extraneous Attributes

(1) Extraneous is RHS?
 e.g.: can we replace $A \rightarrow BC$ with $A \rightarrow C$?
 (i.e. Is B extraneous in $A \rightarrow BC$?)

(2) Extraneous in LHS?
 e.g.: can we replace $AB \rightarrow C$ with $A \rightarrow C$?
 (i.e. Is B extraneous in $AB \rightarrow C$?)

Simple but expensive test:
1. Replace $A \rightarrow BC$ (or $AB \rightarrow C$) with $A \rightarrow C$ in F

 \[F_2 = F - \{A \rightarrow BC\} \cup \{A \rightarrow C\} \]
 or
 \[F - \{AB \rightarrow C\} \cup \{A \rightarrow C\} \]

2. Test if $F_2^+ = F^+$?
 if yes, then B extraneous
Extraneous Attributes

A. RHS: Is B extraneous in $A \rightarrow BC$?

step 1: $F_2 = F - \{A \rightarrow BC\} \cup \{A \rightarrow C\}$
step 2: $F^+ = F_2^+$?

To simplify step 2, observe that $F_2^+ \subseteq F^+$
i.e., not new FD’s in F_2^+

Why? Have effectively removed $A \rightarrow B$ from F

When is $F^+ = F_2^+$?

Ans. When $(A \rightarrow B)$ in F_2^+

Idea: if F_2^+ includes: $A \rightarrow B$ and $A \rightarrow C$,
then it includes $A \rightarrow BC$
Extraneous Attributes

B. LHS: Is B extraneous in A \(\rightarrow \) C ?

step 1: \(F_2 = F - \{ AB \rightarrow C \} U \{ A \rightarrow C \} \)

step 2: \(F^+ = F_2^+ \) ?

To simplify step 2, observe that \(F^+ \subseteq F_2^+ \)

i.e., there may be new FD’s in \(F_2^+ \)

Why? \(A \rightarrow C \) “implies” \(AB \rightarrow C \). therefore all FD’s in \(F^+ \) also in \(F_2^+ \).

But \(AB \rightarrow C \) does not “imply” \(A \rightarrow C \)

When is \(F^+ = F_2^+ \) ?

Ans. When \((A \rightarrow C) \) in \(F^+ \) Idea: if \(F^+ \) includes: \(A \rightarrow C \) then it will include all the FD’s of \(F^+ \).
Extraneous attributes

A. RHS:
 Given F = \{A \rightarrow BC, B \rightarrow C\} is C extraneous in A \rightarrow BC?

 why or why not?

Ans: yes, because

 A \rightarrow C in \{ A \rightarrow B, B \rightarrow C\}+

Proof. 1. A \rightarrow B
 2. B \rightarrow C
 3. A \rightarrow C \quad \text{transitivity using Armstrong’s axioms}
B. LHS:
Given $F = \{A \rightarrow B, AB \rightarrow C\}$ is B extraneous in $AB \rightarrow C$?

why or why not?

Ans: yes, because

$A \rightarrow C$ in F^+

Proof. 1. $A \rightarrow B$
2. $AB \rightarrow C$
3. $A \rightarrow C$ using pseudotransitivity on 1 and 2

Actually, we have $AA \rightarrow C$ but $\{A, A\} = \{A\}$
ALGORITHM MinimalCover (F: set of FD’s)
BEGIN
REPEAT UNTIL STABLE
 (1) Where possible, apply UNION rule (A’s axioms)

 (2) Remove all extraneous attributes:
 a. Test if B extraneous in A → BC
 (B extraneous if
 (A → B) in (F - {A → BC} U {A → C})+)
 b. Test if B extraneous in AB → C
 (B extraneous in AB → C if
 (A → C) in F+)

Example: determine the minimal cover of

\[F = \{ A \rightarrow BC, B \rightarrow CE, A \rightarrow E \} \]

Iteration 1:

a. \(F = \{ A \rightarrow BCE, B \rightarrow CE \} \)

b. Must check for up to 5 extraneous attributes

- B extraneous in \(A \rightarrow BCE \)? No
- C extraneous in \(A \rightarrow BCE \)?
 yes: \((A \rightarrow C) \) in \(\{ A \rightarrow BE, B \rightarrow CE \} \)
 1. \(A \rightarrow BE \) -> 2. \(A \rightarrow B \) -> 3. \(A \rightarrow CE \) -> 4. \(A \rightarrow C \)

- E extraneous in \(A \rightarrow BE \)?
Minimal Cover Algorithm

Example: determine the minimal cover of
\[F = \{A \rightarrow BC, B \rightarrow CE, A \rightarrow E\} \]

Iteration 1:
 a. \[F = \{A \rightarrow BCE, B \rightarrow CE\} \]
 b. Must check for up to 5 extraneous attributes

- B extraneous in \(A \rightarrow BCE\)? Yes
- C extraneous in \(A \rightarrow BCE\)? No
- E extraneous in \(A \rightarrow BE\)? Yes

 1. \(A \rightarrow B \rightarrow 2. A \rightarrow CE \rightarrow A \rightarrow E\)

- E extraneous in \(B \rightarrow CE\)? No
- C extraneous in \(B \rightarrow CE\)? No

Iteration 2:
 a. \(F = \{A \rightarrow B, B \rightarrow CE\}\)
 b. Extraneous attributes:

- C extraneous in \(B \rightarrow CE\)? No
- E extraneous in \(B \rightarrow CE\)? No

 DONE
Find the minimal cover of
\[F = \{ A \rightarrow BC, \]
\[B \rightarrow CE, \]
\[A \rightarrow E, \]
\[AC \rightarrow H, \]
\[D \rightarrow B \} \]

Ans: \[Fc= \{ A\rightarrow BH, \ B\rightarrow CE, \ D\rightarrow B \} \]
Find two different minimal covers of:

\[F = \{ A \rightarrow BC, \quad B \rightarrow CA, \quad C \rightarrow AB \} \]

Ans:

\[F_{c1} = \{ A \rightarrow B, \quad B \rightarrow C, \quad C \rightarrow A \} \]

and

\[F_{c2} = \{ A \rightarrow C, \quad B \rightarrow A, \quad C \rightarrow B \} \]
FD so far...

1. Minimal Cover algorithm
 • result (Fc) guaranteed to be the minimal FD set equivalent to F

2. Closure Algorithms
 a. Armstrong’s Axioms:
 more common use: test for extraneous attributes
 in C.C. algorithm
 b. Attribute closure:
 more common use: test for superkeys

3. Purposes
 a. minimize the cost of global integrity constraints
 so far: \[\text{min gic’ s} = |F_c| \]

 In fact.... \[\text{Min gic’ s} = 0 \]
 (FD’s for “normalization”)
Another use of FD’s: Schema Design

Example:

<table>
<thead>
<tr>
<th>bname</th>
<th>bcity</th>
<th>assets</th>
<th>cname</th>
<th>lno</th>
<th>amt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downtown</td>
<td>Bkln</td>
<td>9M</td>
<td>Jones</td>
<td>L-17</td>
<td>1000</td>
</tr>
<tr>
<td>Downtown</td>
<td>Bkln</td>
<td>9M</td>
<td>Johnson</td>
<td>L-23</td>
<td>2000</td>
</tr>
<tr>
<td>Mianus</td>
<td>Horse</td>
<td>1.7M</td>
<td>Jones</td>
<td>L-93</td>
<td>500</td>
</tr>
<tr>
<td>Downtown</td>
<td>Bkln</td>
<td>9M</td>
<td>Hayes</td>
<td>L-17</td>
<td>1000</td>
</tr>
</tbody>
</table>

R: “Universal relation”

tuple meaning: Jones has a loan (L-17) for $1000 taken out at the Downtown branch in Bkln which has assets of $9M

Design:

+ : fast queries (no need for joins!)

- : redundancy:
 update anomalies examples?
 deletion anomalies
Decomposition

1. Decomposing the schema
 \[R = (\text{bname, bcity, assets, cname, lno, amt}) \]

 \[R_1 = (\text{bname, bcity, assets, cname}) \]

 \[R_1 = (\text{cname, lno, amt}) \]

 \[R = R_1 \cup R_2 \]

2. Decomposing the instance

<table>
<thead>
<tr>
<th>bname</th>
<th>bcity</th>
<th>assets</th>
<th>cname</th>
<th>lno</th>
<th>amt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downtown</td>
<td>Bkln</td>
<td>9M</td>
<td>Jones</td>
<td>L-17</td>
<td>1000</td>
</tr>
<tr>
<td>Downtown</td>
<td>Bkln</td>
<td>9M</td>
<td>Johnson</td>
<td>L-23</td>
<td>2000</td>
</tr>
<tr>
<td>Mianus</td>
<td>Horse</td>
<td>1.7M</td>
<td>Jones</td>
<td>L-93</td>
<td>500</td>
</tr>
<tr>
<td>Downtown</td>
<td>Bkln</td>
<td>9M</td>
<td>Hayes</td>
<td>L-17</td>
<td>1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cname</th>
<th>lno</th>
<th>amt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jones</td>
<td>L-17</td>
<td>1000</td>
</tr>
<tr>
<td>Johnson</td>
<td>L-23</td>
<td>2000</td>
</tr>
<tr>
<td>Jones</td>
<td>L-93</td>
<td>500</td>
</tr>
<tr>
<td>Hayes</td>
<td>L-17</td>
<td>1000</td>
</tr>
</tbody>
</table>
Goals of Decomposition

1. Lossless Joins
 Want to be able to reconstruct big (e.g. universal) relation by joining smaller ones (using natural joins)
 (i.e. \(R_1 \bowtie R_2 = R \))

2. Dependency preservation
 Want to minimize the cost of global integrity constraints based on FD’s
 (i.e. avoid big joins in assertions)

3. Redundancy Avoidance
 Avoid unnecessary data duplication (the motivation for decomposition)

Why important?
 LJ : information loss
 DP: efficiency (time)
 RA: efficiency (space), update anomalies
Dependency Goal #1: lossless joins

A bad decomposition:

<table>
<thead>
<tr>
<th>bname</th>
<th>bcity</th>
<th>assets</th>
<th>cname</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downtown</td>
<td>Bkln</td>
<td>9M</td>
<td>Jones</td>
</tr>
<tr>
<td>Downtown</td>
<td>Bkln</td>
<td>9M</td>
<td>Johnson</td>
</tr>
<tr>
<td>Mianus</td>
<td>Horse</td>
<td>1.7M</td>
<td>Jones</td>
</tr>
<tr>
<td>Downtown</td>
<td>Bkln</td>
<td>9M</td>
<td>Hayes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cname</th>
<th>lno</th>
<th>amt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jones</td>
<td>L-17</td>
<td>1000</td>
</tr>
<tr>
<td>Johnson</td>
<td>L-23</td>
<td>2000</td>
</tr>
<tr>
<td>Jones</td>
<td>L-93</td>
<td>500</td>
</tr>
<tr>
<td>Hayes</td>
<td>L-17</td>
<td>1000</td>
</tr>
</tbody>
</table>

Problem: join adds meaningless tuples

"lossy join": by adding noise, have lost meaningful information as a result of the decomposition
Is the following decomposition lossless or lossy?

<table>
<thead>
<tr>
<th>bname</th>
<th>assets</th>
<th>cname</th>
<th>lno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Downtown</td>
<td>9M</td>
<td>Jones</td>
<td>L-17</td>
</tr>
<tr>
<td>Downtown</td>
<td>9M</td>
<td>Johnson</td>
<td>L-23</td>
</tr>
<tr>
<td>Mianus</td>
<td>1.7M</td>
<td>Jones</td>
<td>L-93</td>
</tr>
<tr>
<td>Downtown</td>
<td>9M</td>
<td>Hayes</td>
<td>L-17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>lno</th>
<th>bcity</th>
<th>amt</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-17</td>
<td>Bkln</td>
<td>1000</td>
</tr>
<tr>
<td>L-23</td>
<td>Bkln</td>
<td>2000</td>
</tr>
<tr>
<td>L-93</td>
<td>Horse</td>
<td>500</td>
</tr>
</tbody>
</table>

Ans: Lossless: \(R = R_1 \Join R_2 \), it has 4 tuples
Ensuring Lossless Joins

A decomposition of $R : R = R_1 \cup R_2$ is lossless iff

$$R_1 \cap R_2 \rightarrow R_1, \text{ or}$$

$$R_1 \cap R_2 \rightarrow R_2$$

(i.e., intersecting attributes must be a superkey for one of the resulting smaller relations)
Decomposition Goal #2: Dependency preservation

Goal: efficient integrity checks of FD’s

An example w/ no DP:
R = (bname, bcity, assets, cname, lno, amt)
 bname → bcity assets
 lno → amt bname

Decomposition: R = R1 U R2
 R1 = (bname, assets, cname, lno)
 R2 = (lno, bcity, amt)

Lossless but not DP. Why?

Ans: bname → bcity assets crosses 2 tables
Decomposition Goal #2: Dependency preservation

To ensure best possible efficiency of FD checks

ensure that only a SINGLE table is needed in order to check each FD

i.e. ensure that: \(A_1 \ A_2 \ ... \ A_n \rightarrow B_1 \ B_2 \ ... \ B_m \)

Can be checked by examining \(R_i = (..., A_1, A_2, ..., A_n, ..., B_1, ..., B_m, ...) \)

To test if the decomposition \(R = R_1 \cup R_2 \cup ... \cup R_n \) is DP

(1) see which FD’s of R are covered by \(R_1, R_2, ..., R_n \)

(2) compare the closure of (1) with the closure of FD’s of R
Decomposition Goal #2: Dependency preservation

Example: Given $F = \{ A \rightarrow B, \ AB \rightarrow D, \ C \rightarrow D\}$

consider $R = R_1 \cup R_2$ s.t.
$R_1 = (A, B, C), \ R_2 = (C, D)$ is it DP?

(1) $F^+ = \{ A \rightarrow BD, \ C \rightarrow D\}^+$
(2) $G^+ = \{A \rightarrow B, \ C \rightarrow D\}^+$

(3) $F^+ = G^+ \ ?$ No because $(A \rightarrow D)$ not in G^+

Decomposition is not DP
Decomposition Goal #2: Dependency preservation

Example: Given \(F = \{ A \rightarrow B, \ AB \rightarrow D, C \rightarrow D \} \)

consider \(R = R_1 \cup R_2 \) s.t.
\[
R_1 = (A, B, D), \quad R_2 = (C, D)
\]

(1) \(F^+ = \{ A \rightarrow BD, \ C \rightarrow D \}^+ \)
(2) \(G^+ = \{ A \rightarrow BD, C \rightarrow D, \ldots \}^+ \)

(3) \(F^+ = G^+ \)
 note: \(G^+ \) cannot introduce new FDs not in \(F^+ \)

Decomposition is DP
Decomposition Goal #3: Redundancy Avoidance

Example:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>x</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>e</td>
<td>x</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>g</td>
<td>y</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>h</td>
<td>y</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>m</td>
<td>y</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>n</td>
<td>z</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>p</td>
<td>z</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

(1) An FD that exists in the above relation is: \(B \rightarrow C \)

(2) A superkey in the above relation is A, (or any set containing A)

When do you have redundancy?
Ans: when there is some FD, \(X \rightarrow Y \) covered by a relation and \(X \) is not a superkey.
Normalization

Decomposition techniques for ensuring:
Lossless joins
Dependency preservation
Redundancy avoidance

We will look at some normal forms:
Boyce-Codd Normal Form (BCNF)
3rd Normal Form (3NF)