IMPLEMENTATION OF RELATIONAL OPERATIONS
(BASED ON SLIDES FROM UC BERKELEY)
Join Operators
Join Operators

• Joins are a very common query operation.
• Joins can be very expensive:
 Consider an inner join of R and S each with 1M records. Q: How many tuples in the answer? (cross product in worst case, 0 in the best(?))

• Many join algorithms have been developed
• Can have very different join costs.
Equality Joins With One Join Column

SELECT *
FROM Reserves R1, Sailors S1
WHERE R1.sid=S1.sid

• Assume:
 – M = 1000 pages in R, \(p_R = 100 \) tuples per page.
 – N = 500 pages in S, \(p_S = 80 \) tuples per page.
 – In our examples, R is Reserves and S is Sailors.

• Cost metric: \# of I/Os. We will ignore output costs.

• We will consider more complex join conditions later.
Simple Nested Loops Join

foreach tuple r in R do
 foreach tuple s in S do
 if r_i == s_j then add <r, s> to result

• For each tuple in the outer relation R, we scan the entire inner relation S.
• How much does this Cost?
• \((p_R \times M) \times N + M = 100,000 \times 500 + 1000\) I/Os.
 – At 10ms/IO, Total: ???
• What if smaller relation (S) was outer?
• \((p_S \times N) \times M + N = 40,000 \times 1000 + 500\) I/Os.
• What assumptions are being made here?
Page-Oriented Nested Loops Join

foreach page b_R in R do
 foreach page b_S in S do
 foreach tuple r in b_R do
 foreach tuple s in b_S do
 if r_i == s_j then add <r, s> to result

• For each page of R, get each page of S, and write out matching pairs of tuples <r, s>, where r is in R-page and S is in S-page.

• What is the cost of this approach?

• \(M*N + M = 1000*500 + 1000 \)
 – If smaller relation (S) is outer, cost = 500*1000 + 500
Block Nested Loops Join

• Page-oriented NL doesn’t exploit extra buffers.

• **Alternative approach**: Use one page as an input buffer for scanning the inner S, one page as the output buffer, and use all remaining pages to hold ‘‘block’’ of outer R.

• For each matching tuple r in R-block, s in S-page, add $<r, s>$ to result. Then read next R-block, scan S, etc.
Examples of Block Nested Loops

• **Cost:**
 Scan of outer + \(\# \text{outer blocks} \times \text{scan of inner} \)
 - \(\# \text{outer blocks} = \text{ceiling}(\# \text{pages of outer}/\text{blocksize}) \)

• **With Reserves (R) as outer, and 100 pages/Block:**
 - Cost of scanning R is 1000 I/Os; a total of 10 blocks.
 - Per block of R, we scan Sailors (S); 10*500 I/Os.

• **With 100-page block of Sailors as outer:**
 - Cost of scanning S is 500 I/Os; a total of 5 blocks.
 - Per block of S, we scan Reserves; 5*1000 I/Os.
Index Nested Loops Join

foreach tuple r in R do
 foreach tuple s in S where r_i == s_j do
 add <r, s> to result

- If there is an index on the join column of one relation
 (say S), can make it the inner and exploit the index.
 - Cost: $M + \left(M \times \rho_R \right) \times \text{cost of finding matching S tuples}$
- For each R tuple, cost of probing S index is about 1.2
 for hash index, 2-4 for B+ tree.
- Cost of then finding S tuples (assuming Alt. (2) or (3)
 for data entries) depends on clustering.
- Clustered index: 1 I/O per page of matching S tuples.
- Unclustered: up to 1 I/O per matching S tuple.
Examples of Index Nested Loops

• Hash-index (Alt. 2) on sid of Sailors (as inner):
 – Scan Reserves: 1000 page I/Os, 100*1000 tuples.
 – For each Reserves tuple: 1.2 I/Os to get data entry in index, plus 1 I/O to get (the exactly one) matching Sailors tuple. **Total:**

• Hash-index (Alt. 2) on sid of Reserves (as inner):
 – Scan Sailors: 500 page I/Os, 80*500 tuples.
 – For each Sailors tuple: 1.2 I/Os to find index page with data entries, plus cost of retrieving matching Reserves tuples. **Assuming uniform distribution,** 2.5 reservations per sailor (100,000 / 40,000). Cost of retrieving them is 1 or 2.5 I/Os depending on whether the index is clustered.
 – **Totals:**
Sorting large files

• Before we continue, let’s think how we can sort a large file stored on Disk.
 – Have to use a block based algorithm
 – Need to bring data in RAM to do some sorting
 – What if the file fits in memory? What if it does not?
2-Way Sort

- **Pass 0:** Read a page, sort it, write it.
 - only one buffer page is used
- **Pass 1, 2, ..., etc.:**
 - requires 3 buffer pages
 - merge pairs of runs into runs twice as long
 - three buffer pages used.

![Diagram of 2-Way Sort](image)
Two-Way External Merge Sort

• Each pass we read + write each page in file.

• N pages in the file => the number of passes

\[= \lceil \log_2 N \rceil + 1\]

• So total cost is:

\[2N\left(\lceil \log_2 N \rceil + 1\right)\]

• **Idea:** Divide and conquer: sort subfiles and merge
General External Merge Sort

More than 3 buffer pages. How can we utilize them?

• To sort a file with N pages using B buffer pages:
 – Pass 0: use B buffer pages. Produce $\lceil \frac{N}{B} \rceil$ sorted runs of B pages each.
 – Pass 1, 2, ..., etc.: merge $B-1$ runs.
Cost of External Merge Sort

• Number of passes: \(1 + \lceil \log_{B-1} \left[\frac{N}{B} \right] \rceil \)
• Cost = \(2N \times \) (# of passes)
• E.g., with 5 buffer pages, to sort 108 page file:
 – Pass 0: = 22 sorted runs of 5 pages each
 (last run is only 3 pages) \[108 / 5\]
• Now, do four-way (B-1) merges
 – Pass 1: = 6 sorted runs of 20 pages each (last
 run is only 8 pages) \[22 / 4\]
 – Pass 2: 2 sorted runs, 80 pages and 28 pages
 – Pass 3: Sorted file of 108 pages
Number of Passes of External Sort

(I/O cost is $2N$ times number of passes)

<table>
<thead>
<tr>
<th>N</th>
<th>B=3</th>
<th>B=5</th>
<th>B=9</th>
<th>B=17</th>
<th>B=129</th>
<th>B=257</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1,000</td>
<td>10</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>10,000</td>
<td>13</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>100,000</td>
<td>17</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1,000,000</td>
<td>20</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10,000,000</td>
<td>23</td>
<td>12</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>100,000,000</td>
<td>26</td>
<td>14</td>
<td>9</td>
<td>7</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>30</td>
<td>15</td>
<td>10</td>
<td>8</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>
Sorting in practice

• There are many other improvements of the basic algorithm
• Double buffering, etc
• In practice assuming a reasonable size buffer, sorting takes 2-3 passes.
Sort-Merge Join (R ♻ S)

• Sort R and S on the join column, then scan them to do a ``merge’’ (on join col.), and output result tuples.

• Particularly useful if
 – one or both inputs are already sorted on join attribute(s)
 – output is required to be sorted on join attributes(s)

• “Merge” phase can require some back tracking if duplicate values appear in join column

• R is scanned once; each S group is scanned once per matching R tuple.
Example of Sort-Merge Join

- **Cost:** Sort S + Sort R + (M+N)
 - The cost of merging: usually M+N,
 - worst case is M*N (but very unlikely!)
- **With 35, 100 or 300 buffer pages, both Reserves and Sailors can be sorted in 2 passes; total join cost: 7500.**
 (BNL cost: 2500 to 15000 I/Os)
Refinement of Sort-Merge Join

• We can combine the merging phases in the *sorting* of R and S with the merging required for the join.
 – Pass 0 as before, but apply to both R then S before merge.
 – If \(B > \sqrt{L} \), where \(L \) is the size of the larger relation, using the sorting refinement that produces runs of length \(2B \) in Pass 0, #runs of each relation is < \(B/2 \).
 – In “Merge” phase: Allocate 1 page per run of each relation, and ‘merge’ while checking the join condition
 – Cost: read+write each relation in Pass 0 + read each relation in (only) merging pass (+ writing of result tuples).
 – In example, cost goes down from 7500 to 4500 I/Os.

• In practice, the I/O cost of sort-merge join, like the cost of external sorting, is *linear*.
Impact of Buffering

• If several operations are executing concurrently, estimating the number of available buffer pages is guesswork.
• Repeated access patterns interact with buffer replacement policy.
 – e.g., Inner relation is scanned repeatedly in Simple Nested Loop Join. With enough buffer pages to hold inner, replacement policy does not matter. Otherwise, MRU is best, LRU is worst (*sequential flooding*).
 – Does replacement policy matter for Block Nested Loops?
 – What about Index Nested Loops? Sort-Merge Join?
Hash-Join

- Partition both relations on the join attributes using hash function h.
- R tuples in partition R_i will only match S tuples in partition S_i.

For $i = 1$ to $\#\text{partitions}$ {
 Read in partition R_i and hash it using $h2$ (not h).
 Scan partition S_i and probe hash table for matches.
}
Observations on Hash-Join

• \#partitions \(k < B \), and \(B-1 > \) size of largest partition to be held in memory. Assuming uniformly sized partitions, and maximizing \(k \), we get:
 \[k = B-1, \quad \text{and} \quad M/(B-1) < B-2, \quad \text{i.e.,} \quad B \text{ must be } > \sqrt{M} \]

• Since we build an in-memory hash table to speed up the matching of tuples in the second phase, a little more memory is needed.

• If the hash function does not partition uniformly, one or more \(R \) partitions may not fit in memory. Can apply hash-join technique recursively to do the join of this \(R \)-partition with corresponding \(S \)-partition.
Cost of Hash-Join

- In partitioning phase, read+write both relns; $2(M+N)$. In matching phase, read both relns; $M+N$ I/Os.
- In our running example, this is a total of 4500 I/Os.

- Sort-Merge Join vs. Hash Join:
 - Given a minimum amount of memory both have a cost of $3(M+N)$ I/Os. Hash Join superior if relation sizes differ greatly (e.g., if one reln fits in memory). Also, Hash Join shown to be highly parallelizable.
 - Sort-Merge less sensitive to data skew; result is sorted.
Set Operations

- Intersection and cross-product special cases of join.
- Union (Distinct) and Except similar; we’ll do union.

- Sorting based approach to union:
 - Sort both relations (on combination of all attributes).
 - Scan sorted relations and merge them.
 - Alternative: Merge runs from Pass 0 for both relations.

- Hash based approach to union:
 - Partition R and S using hash function \(h \).
 - For each S-partition, build in-memory hash table (using \(h2 \)), scan corr. R-partition and add tuples to table while discarding duplicates.
General Join Conditions

• Equalities over several attributes (e.g., \(R.sid=S.sid \text{ AND } R.rname=S.sname \)):
 – For Index NL, build index on \(<sid, sname>\) (if S is inner); or use existing indexes on \(sid\) or \(sname\).
 – For Sort-Merge and Hash Join, sort/partition on combination of the two join columns.

• Inequality conditions (e.g., \(R.rname < S.sname \)):
 – For Index NL, need (clustered!) B+ tree index.
 • Range probes on inner; \# matches likely to be much higher than for equality joins.
 – Hash Join, Sort Merge Join not applicable!
 – Block NL quite likely to be the best join method here.
Aggregation Operators
Schema for Examples

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

• Similar to old schema; *rname* added for variations.
• Reserves:
 – Each tuple is 40 bytes long, 100 tuples per page, 1000 pages. So, \(M = 1000, p_R = 100 \).
• Sailors:
 – Each tuple is 50 bytes long, 80 tuples per page, 500 pages.
 – So, \(N = 500, p_S = 80 \).
Aggregate Operations (\(\text{AVG, MIN, etc.}\))

- **Without grouping:**
 - In general, requires scanning the relation.
 - Given a tree index whose search key includes all attributes in the `SELECT` or `WHERE` clauses, can do index-only scan.

- **With grouping:**
 - Sort on group-by attributes, then scan relation and compute aggregate for each group. (Better: combine sorting and aggregate computation.)
 - Similar approach based on hashing on group-by attributes.
 - Given a tree index whose search key includes all attributes in `SELECT`, `WHERE` and `GROUP BY` clauses, can do index-only scan; if group-by attributes form prefix of search key, can retrieve data entries/tuples in group-by order.
Sort GROUP BY: Naïve Solution

- The Sort iterator naturally permutes its input so that all tuples are output in sequence.
- The Aggregate iterator keeps running info ("transition values" or "transVals") on agg functions in the SELECT list, per group. Example transVals:
 - For COUNT, it keeps count-so-far.
 - For SUM, it keeps sum-so-far.
 - For AVERAGE it keeps sum-so-far and count-so-far.
- As soon as the Aggregate iterator sees a tuple from a new group:
 1. It produces an output for the old group based on the agg function.
 E.g. for AVERAGE it returns (sum-so-far/count-so-far).
 2. It resets its running info.
 3. It updates the running info with the new tuple’s info.
Sort GROUP BY: Naïve Solution

A, 3
B, 2
C, 1
D, 1
Hash GROUP BY: Naïve Solution
(similar to the Sort GROUPBY)

- The Hash iterator permutes its input so that all tuples are output in groups.
- The Aggregate iterator keeps running info ("transition values" or "transVals") on agg functions in the SELECT list, per group
 - E.g., for COUNT, it keeps count-so-far
 - For SUM, it keeps sum-so-far
 - For AVERAGE it keeps sum-so-far and count-so-far
- When the Aggregate iterator sees a tuple from a new group:
 1. It produces an output for the old group based on the agg function
 E.g. for AVERAGE it returns (sum-so-far/count-so-far)
 2. It resets its running info.
 3. It updates the running info with the new tuple’s info
External Hashing

- **Partition:**
 Each group will be in a single disk-based partition file. But those files have many groups inter-mixed.

- **Rehash:**
 For Each Partition i:
 hash i into an in-memory hash table
 Return results until records exhausted then i++
We Can Do Better!

• Put summarization into the hashing process
 – During the ReHash phase, don’t store tuples, store pairs of the form \(<\text{GroupVals}, \text{TransVals}>\)
 – When we want to insert a new tuple into the hash table
 • If we find a matching GroupVals, just update the TransVals appropriately
 • Else insert a new \(<\text{GroupVals,TransVals}>\) pair

• What’s the benefit?
 – Q: How many pairs will we have to maintain in the rehash phase?
 – A: Number of \(\textbf{distinct values}\) of GroupVals columns
 • Not the number of tuples!!
 – Also probably “narrower” than the tuples
We Can Do Even Better Than That: Hybrid Hashing

- What if the set of $<\text{GroupVals}, \text{TransVals}>$ pairs fits in memory?
 - It would be a waste to spill all the tuples to disk and read them all back back again!
 - Recall $<G,T>$ pairs may fit even if there are tons of tuples!
- Idea: keep $<G,T>$ pairs for a smaller 1st partition in memory during phase 1!
 - Output its stuff at the end of Phase 1.
 - Q: how do we choose the number of buffers (k) to allocate to this special partition?

![Diagram of hybrid hashing](image)

- Original Relation
- Disk
- B main memory buffers
- OUTPUT
- Partitions
- Disk
A Hash Function for Hybrid Hashing

- Assume we like the hash-partition function \(h_p \).
- Define \(h_h \) operationally as follows:
 - \(h_h(x) = 1 \) if \(x \) maps to a \(<G,T>\) already in the in-memory hashtable
 - \(h_h(x) = 1 \) if in-memory hashtable is not yet full (add new \(<G,T>\))
 - \(h_h(x) = h_p(x) \) otherwise
- This ensures that:
 - Bucket 1 fits in \(k \) pages of memory
 - If the entire set of distinct hashtable entries is smaller than \(k \), we do no spilling!
Projection (DupElim)

• Issue is removing duplicates.
• Basic approach is to use sorting
 – 1. Scan R, extract only the needed attrs (why do this 1st?)
 – 2. Sort the resulting set
 – 3. Remove adjacent duplicates
 – Cost: Reserves with size ratio 0.25 = 250 pages. With 20 buffer pages can sort in 2 passes, so
 1000 + 250 + 2 * 2 * 250 + 250 = 2500 I/Os
• Can improve by modifying external sort algorithm:
 – Modify Pass 0 of external sort to eliminate unwanted fields.
 – Modify merging passes to eliminate duplicates.
 – Cost: for above case: read 1000 pages, write out 250 in runs of 40 pages, merge runs = 1000 + 250 + 250 = 1500.

```
SELECT DISTINCT R.sid, R.bid
FROM Reserves R
```
DupElim Based on Hashing

• Just like our discussion of GROUP BY and aggregation from before!
 – But the aggregation function is missing

 – SELECT DISTINCT R.sid, R.bid FROM Reserves R
 – SELECT R.sid, R.bid FROM Reserves R GROUP BY R.sid, R.bid

• Cost for Hashing? Without “hybrid”
 – assuming partitions fit in memory (i.e. #bufs >= square root of the #of pages of projected tuples)
 – read 1000 pages and write out partitions of projected tuples (250 pages)
 – Do dup elim on each partition (total 250 page reads)
 – Total : 1500 I/Os.

• With “hybrid hash”: subtract the I/O costs of 1st partition
DupElim & Indexes

- If an index on the relation contains all wanted attributes in its search key, can do \textit{index-only} scan.
 - Apply projection techniques to data entries (much smaller!)
- If an ordered (i.e., tree) index contains all wanted attributes as \textit{prefix} of search key, can do even better:
 - Retrieve data entries in order (index-only scan), discard unwanted fields, compare adjacent tuples to check for duplicates.

- Same tricks apply to GROUP BY/Aggregation
Summary

• **Queries are composed of a few basic operators**;
 – The implementation of these operators can be carefully tuned (and it is important to do this!).
 – Operators are “plug-and-play” due to the *Iterator* model.

• Many alternative implementation techniques for each operator; no universally superior technique for most.

• Must consider alternatives for each operation in a query and choose best one based on statistics, etc.

• This is part of the broader task of Query Optimization, which we will cover next!