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Abstrac t .  An algorithm for ranking spatial objects according to in- 
creasing distance from a query object is introduced and analyzed. The 
algorithm makes use of a hierarchical spatial data structure. The in- 
tended application area is a database environment, where the spatial 
data structure serves as an index. The algorithm is incremental in the 
sense that objects are reported one by one, so that a query processor can 
use the algorithm in a pipelined fashion for complex queries involving 
proximity. It is well suited for k nearest neighbor queries, and has the 
property that k needs not be fixed in advance. 

1 Introduct ion 

Indexes are used in databases to facilitate retrieval of records with similar values. 
For a particular at tr ibute,  an index yields an ordering of all records in increasing 
(or decreasing) order of the a t t r ibute  value. Extending this idea to more than one 
a t t r ibute  is a bit complex. One approach is to make the first at t r ibute a pr imary 
a t t r ibute  and the additional at t r ibute a secondary attribute.  Thus we first sort 
the records according to the value of the first a t t r ibute and we break ties by use 
of the second attr ibute.  This is fine as long as we only want the records sorted 
by the value of the first at tr ibute.  If  we want the records ordered by the value of 
the second attr ibute,  then our index is useless as consecutive records obtained by 
the index are not necessarily ordered by the value of the second attr ibute.  One 
solution is to build an additional index on the second attribute.  This is feasible 
but  does take up more space. 

The solution of adding a second index is acceptable as long as queries do 
not make use of a combination of the at tr ibute values. Such a combination is 
generally meaningless if the dimensional units of the at t r ibute values differ. For 
example,  if one at t r ibute  is age and the other is weight, then the corresponding 
dimensional units could be years and pounds. In this case, we are not likely to 
t ry to determine the nearest record to the one with name John Jones in terms 
of age and weight as we don' t  have a commonly accepted notion of the meaning 
of the year-pound unit. 

Spatial  databases are distinguished from conventional databases, in part ,  by 
the fact tha t  some of the at tr ibutes are locational and in which case they have 

* This work was supported in part by the National Science Foundation under grants 
IRI-92-16970 and ASC-93-18183. 



84 

the same dimensional unit. More importantly, this common dimensional unit is 
distance in space. The distance unit is the same regardless of the dimensionality 
of the space spanned by the locational (i.e., spatial) attributes of the records as 
long as they cover the same space. What  this means is that if we combine the at- 
tributes, and seek to determine the nearest record of type t to the one with name 
Chicago, then the corresponding unit would be distance regardless of whether 
there are two or three (or even more) locational attributes associated with t. 
Note that  just because an attribute has a dimensional unit of distance does not 
make it a locational attribute. For example, size attributes are also measured in 
terms of distance yet they are not locational. Thus attributes corresponding to a 
person's height and waist are not locational attributes and cannot be combined. 

In addition, different spatial databases can be distinguished according to the 
types of records that they store. There are two types: points and objects. We 
define the former to have a zero volumetric measure, while the latter have a 
nonzero volumetric measure. In other words, the latter have an extent while the 
former do not (i.e., they are discrete). Note that  the records in a conventional 
database are always discrete, and can be viewed as points in a higher dimensional 
space. The difference is that  in the case of spatial data, the dimensional unit of 
the at tr ibute is distance in space. 

Regardless of the distinction between the types of data stored in a spatial 
database, we are often interested in ordering the records on the basis of some 
combination of the values of the locational attributes. This ordering is used 
to facilitate storage of the records as the storage methods are inherently one- 
dimensional. It is desirable for this ordering to also preserve proximity in the 
sense that  records that  are close to each other in the multidimensional space 
formed by ranges of the values of the locational attributes are also close to each 
other in the ordering. Of course, if there is just one locational attribute, then 
the ordering is the same as that  used for a non-locational attribute. 

An example of such an ordering technique is hashing. There are two variants 
of hashing, depending on whether the resulting ordering is explicit or implicit. 
An explicit ordering results from the use of a particular mapping from the higher 
dimensional space to a one-dimensional space. An example mapping is one that  
interleaves the individual bits in the binary representation of the locational at- 
tribute values. Such mappings result in what are known as space-filling curves [5] 
(e.g., Peano, Hilbert, Sierpinsky, etc.) although no curve has the property that  
all records that  are close to each other in the multidimensional space formed by 
the ranges of the locational attr ibute values are also close to each other in the 
range of the mapping. 

Bucketing methods are examples of an implicit ordering. In this case, the 
records are sorted on the basis of the space that they occupy (i.e., the space 
formed by the values of their locational attribute) and are grouped into cells (i.e., 
buckets) of a finite capacity. Of course, if there is just one locational attribute, 
then the implicit and explicit orderings are equivalent. When the records are 
such that  they also have an extent (e.g., non-point spatial objects), then the 
notion of a bucket is more meaningful. In particular, there are two possible 
approaches [14]. 
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The first approach finds a minimum bounding box for the object. These 
boxes may be subsequently aggregated by use of hierarchies. In such a case, 
the minimum bounding boxes may not necessarily be disjoint. The drawback is 
that  an object is associated with just one bounding box. Thus if we are given a 
particular point p, and we search for an object that  contains p, then just  because 
we don' t  find an object that  contains p in a bounding box b containing p does 
not mean that  objects in other bounding boxes do not contain p. 

An alternative approach decomposes the objects so that the bounding boxes 
that  contain them are disjoint. Once again, these boxes may be subsequently 
aggregated into hierarchies. Now, for each point p there is just one bounding 
box b that  contains p and if none of the objects in b contain p, then none of 
the objects in the database will contain p and the query fails. The drawback is 
that  an object can be decomposed into several pieces and hence associated with 
many boxes. Thus if we want to determine which objects are associated with 
a region that  spans several bounding boxes, then we may report a particular 
object more than once. For such queries we must have a post-processing step 
that  removes duplicate answers. The process of removing duplicate may require 
a process as complex as sorting although, depending on the nature of the object, 
other methods may be applicable (e.g., [2]). 

The ordering provided by an index is useful for ranking the data  based on its 
closeness to a particular value v of the attribute a. The ability to perform the 
ranking does not depend on whether a record r exists in the database such that  
at tr ibute a of r has value v. Value v serves as a reference point for the ranking. 

In this paper, we focus on the issue of ranking in spatial databases. For the 
moment,  assume that  we have just one attribute and that  it can be locational or 
non-locational. In this case the explicit and implicit indexes are equivalent, and 
we can derive the ranking directly from the index for the attribute. In particular, 
the index is obtained by sorting the data with respect to a particular reference 
point (usually the smallest possible value - -  e.g., zero for an attribute whose 
value is of type ratio). For example, consider the non-locational attr ibute weight 
and its corresponding index. Suppose that  the database records correspond to 
individuals, and we want to find all individuals in the order of the closeness of 
their weight to that  of John Smith whose weight is 150 pounds. The answer is 
computed by looking up the value 150 in the index and then proceeding in two 
directions along the index to get the nearest individuals by weight in constant 
time. We do not have to rebuild the index if we want to be able to answer the 
next query which deals with Sam Jones whose weight is 200 pounds. 

In the case of more than one locational attribute all of whose values are 
of type distance, we wish to obtain a ranking of the records in terms of their 
distance from a particular value v of the locational attributes. If the index is 
explicit, then we cannot derive this ranking directly from the index for the 
locational attributes. As an example, we could have built an index on the basis 
of the distance of the records from a particular reference point P1 using a given 
distance metric. However, if we want to obtain the records in order with respect 
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to a new reference point P2, we must resort them. In other words, we cannot 
simply say that  their distance from P2 is equal to the addition or subtraction 
of some constant equal to the distance from P1 to P2 depending on the relative 
position of the record with respect to P1 and P2, which is what is done when 
there is just one at tr ibute (regardless of whether or not it is locational). Thus we 
have to rebuild the index, which is a costly process if we need to do it for each 
query. Thus, what is usually done is to use an implicit index such as the one 
discussed earlier that  is based on sorting the objects with respect to the space 
that  they occupy rather than with respect to each other or some fixed reference 
point. 

Ranking queries are frequently used in spatial databases (e.g., in browsing 
applications). For example, we may wish to find all the houses in the database in 
the order of their distance from a point at location P.  Often the desired ranking 
is partial. For example, we may wish to find the nearest city of population 
greater than 100,000 to Las Vegas. In this case, if we make use of the index 
on the locational attributes corresponding to the location of the cities, then we 
want to obtain the cities in the order of the cities' distance from Las Vegas. The 
population of the cities is examined in increasing order of their distance from Las 
Vegas. The process ceases once the condition on the value of the non-locational 
population at tr ibute is satisfied. It should be clear that the query to find the 
closest city to Las Vegas is also a partial ranking query. Observe that the key 
to the utility of the ranking process is that  if the closest record does not satisfy 
the query condition, then we can continue the search from where we computed 
the current answer. We do not restart the search again from reference point of 
the index. 

In this paper we show how to respond to ranking queries in a spatial database 
when the spatial data  is organized using an implicit index. There are a number 
of possible solutions depending on the nature of the implicit index. We present 
a general solution which is designed to minimize the number of blocks of the 
underlying decomposition that are examined. In order to be able to analyze its 
execution cost, we must have a concrete representation. We choose a represen- 
tation that  decomposes the objects so that  the bounding boxes that contain 
them are disjoint. Moreover, we assume a regular decomposition such as that  
provided by the PMR quadtree [9]. 0 f  course, other representations (e.g., the 
t~+-tree [15]) could also have been used as well as an implementation where the 
bounding boxes are not disjoint (e.g., an R-tree [6]). Our methods are equally 
applicable to these representations. 

2 D a t a  S t r u c t u r e  

As we mentioned earlier, our algorithm was developed for the PMR quadtree but 
can be adapted to many other hierarchical spatial data  structures that  make use 
of what we term container block. This term is used here to denote an area in space 
which may itself be decomposed further on basis of the number or particular 
nature of the spatial objects that it contains. Examples of such structures include 
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R-trees [6], R+-trees [151, and k-d-b-trees [10]. 
The PMR quadtree uses a regular decomposition of space to index spatial ob- 

jects. Each quadtree block is a square, or a hypercube in higher dimensions. Leaf 
blocks contain the spatial objects (or pointers to them), whereas non-leaf blocks 
are decomposed into 2 d sub-blocks, where d is the number of dimensions. Fig. 1 
presents an example two-dimensional PMR quadtree with a splitting threshold 
of one where the objects are points representing cities. The cities are inserted 
in the order Chicago, Mobile, Toronto, Buffalo, Denver, Omaha, Atlanta, Mi- 
ami. The inherent definition of a quadtree is a representation that  recursively 
decomposes space into congruent blocks until some condition is satisfied. The 
retrieval of the blocks that  comprise the quadtree is facilitated using a number 
of different access structures [13]. The most common access structures are a tree 
having four sons at each level (see Fig. lb) or a tree such as a B+-tree [4] that  
is based on finding an ordering on the blocks. An example of such an ordering is 
that  achieved by interleaving the bits comprising the binary representations of 
the x and y coordinates of the upper-left corners of each block. These numbers 
are then used as keys in the B+-tree. We use the former implementation in the 
discussion of our algorithm, although it also works for the latter implementation. 

PMR quadtrees differ from other quadtree variants in the way in which ob- 
ject insertions trigger decomposition of quadtree blocks. In particular, if, upon 
insertion of an object, the number of objects in a leaf block l intersected by the 
object exceeds a threshold value s (similar to a bucket capacity but not quite 
the same concept), then l is split once and the objects in l are reinserted into 
the new sub-blocks of I that  they intersect. Note that  the number of objects in 
a leaf block may exceed the threshold value. However, the number of objects in 
a leaf block at depth i is bounded by s + i, assuming there is no limit on the 
depth of the tree. 

3 Overview of the Algorithm 

We present a top-down solution. An alternative is to use a bottom-up solution. 
In this case, the algorithm locates the block b containing the query object q and 
then finds the nearest object o by examining the adjacent neighboring blocks of 
b in a clockwise order. Depending on the nature of the distance metric that  is 
employed, we m~y have to examine blocks that  are not immediately adjacent to 
b. This technique is termed bottom-up because we are obtaining the neighbors 
using neighbor-finding techniques [12] that  do not restart the search at the root 
of the tree. In the case of a pointer-based (i.e., a tree) quadtree representation, 
they have been shown to visit a constant number of blocks for each neighbor- 
finding operation. This method could be very fast especially if o is in block b or 
one of the brothers of b. However, it may have to visit all of the blocks around 
the node [7]. Worse of all, if we need the next closest object, then we have to 
restart the search from the beginning rather than from where we last left off, 
making it unsuitable for ranking. In contrast, our algorithm can simply continue 
the search from the object it last found. 
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Fig. 1. A PMR quadtree representing points corresponding to cities. (a) The block 
decomposition induced by the quadtree, and (b) a tree access structure for the blocks 
in (a) 

The key to the efficiency of the bottom-up method is that it works on the 
principle that if block b is empty, then the three siblings of b must contain at least 
s +  1 objects or we would not have decomposed the space. This acts as a pruning 
device on the search. However, as we are interested in obtaining a ranking, we 
make use of the top-down method. First, we find leaf nodes containing q. We 
then use the recursion to keep track of what blocks have already been seen. Once 
we visit a leaf node, we also want to remember the objects that we have already 
encountered in the block which may still not yet be the closest ones. We achieve 
this by modifying the top-down algorithm to maintain a priority queue to record 
the blocks whose descendants have not been visited yet as well as the objects 
which have not yet been visited. 
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Using the top-down method, it is easy to find a leaf node containing q. Nev- 
ertheless, we need to be able to extend this technique to find the nearest object 
as the leaf may be empty or the other object in the leaf may be quite far from 
the query object. The problem here is that  we have to unwind the recursion to 
find the nearest object. However, if we want to find the second nearest object, 
then the solution becomes even tougher. To resolve this problem, we replace the 
recursion stack where the next block to be examined is the block nearest to q 
with a priority queue. The key to our solution is that the objects are also stored 
in the priority queue. Once a leaf block b is encountered, we a t tempt  to insert 
the objects stored in b into the priority queue. We can only insert an object o 
if it has not already been reported. This can be determined by checking if o's 
distance from the query object q is less than the distance of b from q. In this 
ease, o was contained in a block c which was closer to q than b, and hence already 
processed earlier. 

Observe that  the data  objects as well as the query objects can be of arbitrary 
type (e.g., points, rectangles, polygons, etc.). The only requirement is that  there 
be a distance function between the query object type and the object type stored 
in the index (feature metric), and the query object type and the container block 
type (block metric). The two distance functions must be consistent with each 
other. Consistency means that  for a feature f with a distance d from the query 
object q, there must exist a block b containing f such that  the distance from b to 
q is less than or equal to d. This will hold if both distance functions are based on 
the same distance metric, of which some common examples are the Euclidean, 
Manhat tan  and Chessboard metrics. The consistency assumption also means 
that  the distance from a query object to a block that  contains it is zero. 

The algorithm works for any dimension, although the examples we give are 
restricted to two dimensions. Also the query object need not be in the space of 
the dataset. 

4 A l g o r i t h m  

We first consider a regular recursive top-down traversal of the index to locate 
a leaf block containing a query object. Note that  there could be more than one 
such block. The traversal is initiated with the root block as the second argument. 

FINDLEhF(QueryObject, Block) 
1 i f  QueryObject is in container block Block t h e n  
2 if  Block is a leaf block t h e n  
3 Report  leaf block Block 
4 else  
5 fo r  each Child block of container block Block do  
6 FINDLEAF(QueryObjecl, Child) 
7 e n d d o  
8 e n d i f  
9 e n d i f  
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The first task is to extend the algorithm to find the nearest object to the 
query object. In particular, once the leaf block containing the QueryObject has 
been found in line 3, we could start by examining the objects contained in that 
block. The object closest to the query object might reside in another quadtree 
block. Finding that block may in fact require unwinding the recursion to the 
top and descending again deeper into the tree. Furthermore, once that block has 
been found, it doesn't aid in finding the next nearest object. 

To resolve this dilemma, we replace the recursion stack of the regular top- 
down traversal with a priority queue. In addition to using the priority queue for 
container blocks, objects are also put on the queue as leaf blocks are processed. 
The key used to order the elements on the queue is their distance from a query 
object. In order to distinguish between two elements at an equal distance from 
the query object, we adopt the convention that blocks are ordered before objects, 
while different objects are ordered according to some arbitrary (but unique) rule. 
This makes it possible to avoid reporting a particular object more than once, 
which is necessary when using a disjoint decomposition where an object may be 
associated with more than one block (e.g., PMR quadtree, R+-tree). 

A container block is not examined until it reaches the head of the queue. At 
this time, all blocks and objects closer to the query object have been looked at. 
Initially, the container block spanning the whole index space is the sole element 
in the priority queue. In subsequent steps, the element at the head of the queue 
(i.e., the closest element not yet examined) is retrieved until the queue has been 
emptied. 

INC NEAREST(QueryObject, SpatialIndex) 
1 Queue (-- NEWPRIORITYQUEUE 0 
2 Block *- ROOTBLOCK(SpatiaIIndex) 
3 ENQUEUE(Queue, DIsT(Block, QueryObject), Block) 
4 while not  ISEMPTY(Queue) do 
5 Element ~-- DEQUEUE(Queue) 
6 ff Element is a spatial object t h e n  
7 while Element ---- FIasT(Queue) do 
8 DELETEFIRST(Queue) 
9 enddo  

10 Report Element 
11 elslf Element is a leaf block then  
12 for each Object in leaf block Element do 
13 if DIsw( Object, QueryObject) >_ DIsw( Element, QueryObject) t h e n  
14 ENQUEUE(Queue, DISW( Object, QueryObject), Object) 
15 end i f  
16 e n d d o  
17 e l s e /*  Element is a non-leaf container block */ 
18 for each Child block of container block Element in Spatiallndex do 
19 ENQUEUE( Queue, DIsT( Child, QueryObject), Child) 
20 enddo  
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21 e n d i f  
22 e n d d o  

Lines 1-3 initialize the quadtree. In line 10, the next closest object is re- 
ported. At that  point, some other routine (such as a query processor) could take 
control, possibly resuming the algorithm at a later time to get the next closest 
object, or alternately terminate it if no more objects are desired. 

Recall that  for some representations, a spatial object may span several con- 
tainer blocks. The algorithm must thus guard against objects being reported 
more than once [2]. The test (i.e., the i f  statement) in line 13 ensures that  ob- 
jects that  have already been reported are not put  on the queue agai n . For this to 
work properly, blocks must be retrieved from the queue before spatial objects at 
the same distance. Otherwise, a feature may be retrieved from the queue before 
a block b containing it t h a t  is at the same or less distance from the query object. 
When the feature then is encountered again in block b, there is no way of know- 
ing that  it has already been reported. The loop in lines 7-9 eliminate duplicate 
instances of an object from the queue. By inducing an ordering on features that  
are at the same distance from the query object, all of the instances of an object 
will be clustered at the front of the queue when the first instance reaches the 
front. The  reason we check for duplicates in this manner is that for many rep- 
resentations of a priority queue it is not efficient to test for membership. Thus, 
the removal of duplicates is largely a byproduct of the algorithm. 

We now give an example to illustrate how the algorithm works. Consider 
the simple database given in Fig. 2a containing two-dimensional point data. 
Assuming a Euclidean distance metric, we want to "find the city closest to the 
point (6S ,62)  which has a population of at least 1 million". In our scenario, 
a query processor interacts with our algorithm to retrieve cities in the order of 
their distance from the point. Note that the algorithm inserts a city c into the 
queue even if its population is not high enough to satisfy our query condition. 
The reason is that  checking for the satisfaction of this condition would require 
a database access. Such an access might be unnecessary as c's distance from the 
query point may result in c not coming to the front of the queue by the time the 
algorithm terminates (i.e., by the time enough answers have been output).  

Figure 2b shows a PMR quadtree with a splitting threshold value of 1 con- 
taining the points corresponding to the cities. Cities with a population of more 
than 1 million are denoted with solid dots and the query point is denoted with 
with an 'x'. Several concentric circles are drawn around the query point to make 
relative distances more obvious. Most of the leaf blocks are labelled with a num- 
ber. In the description below, a PMR quadtree block is denoted by its depth 
and the label in its North-Westernmost descendant leaf block. The root block is 
thus denoted by 0/1 and its NE son by 1/2. The elements in the priority queue 
are listed within brackets in the order of their distance from the query point. 

Initially, the queue contains only the root block, i.e., [0/1]. In the first step, 
the root block is retrieved from the queue, and as it is a non-leaf block, its 
sub-blocks are put on the queue: [1/2, 1/13, 1/1, 1/6]. Next, the block 1/2 is 
dequeued, and its sub-blocks enqueued: [2/4, 2/5, 1/13, 2/2, 1/1, 2/3, 1/6]. In 
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the next step, the leaf block 2/4 is dequeued, but it contains no objects. The leaf 
block 2/5, however, contains Buffalo, so Buffalo is inserted in the queue: [1/13, 
2/2, 1/1, 2/3, Buffalo, 1/6]. In the next three steps, the sub-blocks of 1/13 are 
put on the queue, the leaf 2/13 is retrieved from the queue but contains no 
objects, and the city Toronto is enqueued as the leaf block 2/2 is processed: 
[1/1, Toronto, 2/14, 2/3, Buffalo, 1/6, 2/15, 2/16]. No action is taken as 1/1 
is dequeued since it is empty, but Toronto is the first city to be reported to 
the query processor. The query processor discards it as it has a population less 
than 1 million and requests the next closest city. The top two elements on the 
queue, 2/14 and 2/3, are empty leaf blocks, so no action is taken. Next, Buffalo 
is reported to the query processor but its population is too low. At this point, 
the queue contains [1/6, 2/15, 2/16]. Now, 1/6 is taken off the queue and its 
sub-blocks enqueued, resulting in [2/7, 2/15, 2/16, 2/12, 2/6, 2/11]. The sub- 
blocks of 2/7 are then put on the queue, resulting in [3/8, 3/10, 3/7, 3/9, 2/15, 
2/16, 2/12, 2/6, 2/11]. The blocks 3/8 and 3/10 are empty, but 3/7 contains 
Chicago, so it is put on the queue: [Chicago, 3/9, 2/15, 2/16, 2/12, 2/6, 2/11]. 
Finally, Chicago is reported to the query processor, which terminates the search 
and returns Chicago as the result of the query. 

5 A n a l y s i s  

Our solution to the problem of finding the nearest object is not more efficient 
than other known methods [3, 7]. However, it is more general in several respects. 
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The algorithm presented in [3] only works with point data and relies on a spe- 
cialized data  structure to achieve optimality in execution time for approximate 
nearest neighbor queries. This structure is static and must be rebuilt if more 
points are introduced. In addition, it is not amenable to practical implementa- 
tion. Thus the authors implemented a greatly simplified data structure (thereby 
sacrificing the optimality guarantee of their algorithm while still yielding an ap- 
proximate answer) that  resembles k-d trees, and also use a priority queue in the 
query process. In contrast, our algorithm can be used for arbitrary data  objects 
as well as a large class of spatial indices. Of course, its level of efficiency may 
depend on the type of spatial index used. The main advantage of our method 
compared to the one proposed in [7] is that  the latter can not be efficiently used 
to find several of the nearest objects, only the nearest. Also, that  method relies 
on a quadtree-like decomposition. The algorithm presented in [11] is limited to 
points as query objects and the R-tree as spatial index, although it may possibly 
be extended to work for a wider class of query objects and spatial indices. 

The algorithm that  we presented can be used to find the k nearest neighbors 
to a query object. However, in our case, the k is not fixed a-priory. This is in 
contrast with the algorithm in [11] for finding k nearest neighbors. In particular, 
once it has computed the k nearest neighbors, if the k + 1 st nearest neighbor is 
desired, then the algorithm must be restarted anew. 

The analysis below, although incomplete, gives an indication of the worst- 
case behavior of the algorithm. Various simplifications are made to ease the task. 
First, we assume that  calculating the distance metric takes a constant amount 
of time. This is true for simple objects such as points and lines, but may not be 
true for more complex ones (e.g., polygons). 

Second, the spatial index is assumed to have some of the properties of the 
PMR quadtree. Suppose that  there are N objects. For some object types (e.g., 
points, lines) it can be shown that  under certain assumptions on the data distri- 
bution and the tree depth, the number of blocks in a PMR quadtree is propor- 
tional to N [8]. We also assume that  the objects in question are already stored 
in a spatial index and ignore the cost of the preprocessing needed to build the 
index. 

In order to complete our analysis of the space requirements of the algorithm, 
we need to know the maximum size of the priority queue. Let us consider the 
queue at an arbitrary time during the execution of the algorithm, and let d be 
the distance from the object at the head of the queue to the query object. All of 
the objects in the queue are at a distance of at least d from the query objec t and 
are contained in blocks at a distance of at most d from the query object (these 
are blocks that  have been retrieved from the queue and processed). A worst-case 
scenario is such that  all leaf blocks containing objects are closer to the query 
object than is the nearest object. In this case, all objects will be inserted into the 
queue before the nearest one is found. This gives a worst-case bound of O(N) 
on the size of the queue. However, this is a pathological case, which is unlikely 
to arise. In practice, the maximum size of the queue is much smaller. 

If all the objects need to be ranked by their distance from the query object, 
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then the execution time of the algorithm is at worst O(N log M) where N is the 
number of leaf blocks in the spatial index and M is the maximum number of 
items in the priority queue. This assumes a priority queue implementation where 
update operations take O(log M) time. As discussed above, M is O(N) in the 
worst case, which gives a bound of O(N log N). This compares favorably with 
one-dimensional sorting algorithms. 

An alternative solution for ranking all the objects is to compute the distance 
for all of them from the query object and then to sort them using a conventional 
sorting technique. The cost of this is O ( N l o g N )  where N is the number of 
objects. In contrast, our ranking algorithm has the advantage that it doesn't 
have to retrieve all of the objects at once. It is dynamic. Also, we can achieve a 
better  result than O(N log N) in practice as often we don' t  sort on the objects; 
instead, we sort on the container blocks. This is quite important  when executing 
in a disk-based environment as the inspection of a container blocks often does 
not require us to examine their contents which may require a disk access. 

In our ranking algorithm, container blocks are inserted in the priority queue 
even though they may be empty leaf blocks. We could examine blocks before 
putt ing them on the queue and just insert the non-empty ones. The problem 
here is that  if we were executing in a disk-based system, then we would require 
a disk access every time we check if a container is empty. In contrast, when we 
insert all the blocks into the priority queue without regard to their contents, 
we may not have to look at many of them as they may get pruned from the 
search by virtue of their distance from the query object (i.e., if the search is 
terminated after finding an object closer to the query object). However, if we 
want a ranking of all of the objects, then it may be advantageous to inspect blocks 
before putt ing them on the queue, since then fewer priority queue operations are 
needed in addition to the queue being smaller. 

For a partial ranking of the objects, our algorithm visits a minimal number 

of container blocks in the sense that  given that  the k th nearest neighbor is at 
a distance of dk from the query object q, only the container blocks that  lie 
completely or in part within dk of q have had their contents examined by the 
time the k nearest neighbors have been found. However, note that all of the 
container blocks could be within dk of q, regardless of the value of k. Thus the 
worst-ease execution time is the same as for finding a total  ranking, O(N log N).  

6 C o n c l u s i o n  

The algorithm presented in this paper was designed to work in the SAND [1] 
spatial database environment, where a PMI~ quadtree is used as the underlying 
spatial index. However, the algorithm is not limited to a PMt~ quadtree. It 
should work (with minor modifications) for a wide class of spatial indices, that  
includes l~-tree variants and k-d-b-trees. We have already successfully adapted 
the algorithm to work with an R*-tree index. The basic requirement that  a 
spatial index must satisfy for the algorithm to be useful is that  the spatial index 
decomposes space into blocks that are organized hierarchically in a tree-like 
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fashion. Of course, much of our analysis of the execution time of the algorithm 
depends on characteristics of the PMtt  quadtree, and may change for other 
spatial data  structures. 
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