
Ranking in Spatial Databases*

Gisli R. t t jaltason and Hanan Samet

Computer Science Department, Center for Automation Research, and Institute for
Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA

Abstrac t . An algorithm for ranking spatial objects according to in-
creasing distance from a query object is introduced and analyzed. The
algorithm makes use of a hierarchical spatial data structure. The in-
tended application area is a database environment, where the spatial
data structure serves as an index. The algorithm is incremental in the
sense that objects are reported one by one, so that a query processor can
use the algorithm in a pipelined fashion for complex queries involving
proximity. It is well suited for k nearest neighbor queries, and has the
property that k needs not be fixed in advance.

1 Introduct ion

Indexes are used in databases to facilitate retrieval of records with similar values.
For a particular at tr ibute, an index yields an ordering of all records in increasing
(or decreasing) order of the a t t r ibute value. Extending this idea to more than one
a t t r ibute is a bit complex. One approach is to make the first at t r ibute a pr imary
a t t r ibute and the additional at t r ibute a secondary attribute. Thus we first sort
the records according to the value of the first a t t r ibute and we break ties by use
of the second attr ibute. This is fine as long as we only want the records sorted
by the value of the first at tr ibute. If we want the records ordered by the value of
the second attr ibute, then our index is useless as consecutive records obtained by
the index are not necessarily ordered by the value of the second attr ibute. One
solution is to build an additional index on the second attribute. This is feasible
but does take up more space.

The solution of adding a second index is acceptable as long as queries do
not make use of a combination of the at tr ibute values. Such a combination is
generally meaningless if the dimensional units of the at t r ibute values differ. For
example, if one at t r ibute is age and the other is weight, then the corresponding
dimensional units could be years and pounds. In this case, we are not likely to
t ry to determine the nearest record to the one with name John Jones in terms
of age and weight as we don' t have a commonly accepted notion of the meaning
of the year-pound unit.

Spatial databases are distinguished from conventional databases, in part , by
the fact tha t some of the at tr ibutes are locational and in which case they have

* This work was supported in part by the National Science Foundation under grants
IRI-92-16970 and ASC-93-18183.

84

the same dimensional unit. More importantly, this common dimensional unit is
distance in space. The distance unit is the same regardless of the dimensionality
of the space spanned by the locational (i.e., spatial) attributes of the records as
long as they cover the same space. What this means is that if we combine the at-
tributes, and seek to determine the nearest record of type t to the one with name
Chicago, then the corresponding unit would be distance regardless of whether
there are two or three (or even more) locational attributes associated with t.
Note that just because an attribute has a dimensional unit of distance does not
make it a locational attribute. For example, size attributes are also measured in
terms of distance yet they are not locational. Thus attributes corresponding to a
person's height and waist are not locational attributes and cannot be combined.

In addition, different spatial databases can be distinguished according to the
types of records that they store. There are two types: points and objects. We
define the former to have a zero volumetric measure, while the latter have a
nonzero volumetric measure. In other words, the latter have an extent while the
former do not (i.e., they are discrete). Note that the records in a conventional
database are always discrete, and can be viewed as points in a higher dimensional
space. The difference is that in the case of spatial data, the dimensional unit of
the at tr ibute is distance in space.

Regardless of the distinction between the types of data stored in a spatial
database, we are often interested in ordering the records on the basis of some
combination of the values of the locational attributes. This ordering is used
to facilitate storage of the records as the storage methods are inherently one-
dimensional. It is desirable for this ordering to also preserve proximity in the
sense that records that are close to each other in the multidimensional space
formed by ranges of the values of the locational attributes are also close to each
other in the ordering. Of course, if there is just one locational attribute, then
the ordering is the same as that used for a non-locational attribute.

An example of such an ordering technique is hashing. There are two variants
of hashing, depending on whether the resulting ordering is explicit or implicit.
An explicit ordering results from the use of a particular mapping from the higher
dimensional space to a one-dimensional space. An example mapping is one that
interleaves the individual bits in the binary representation of the locational at-
tribute values. Such mappings result in what are known as space-filling curves [5]
(e.g., Peano, Hilbert, Sierpinsky, etc.) although no curve has the property that
all records that are close to each other in the multidimensional space formed by
the ranges of the locational attr ibute values are also close to each other in the
range of the mapping.

Bucketing methods are examples of an implicit ordering. In this case, the
records are sorted on the basis of the space that they occupy (i.e., the space
formed by the values of their locational attribute) and are grouped into cells (i.e.,
buckets) of a finite capacity. Of course, if there is just one locational attribute,
then the implicit and explicit orderings are equivalent. When the records are
such that they also have an extent (e.g., non-point spatial objects), then the
notion of a bucket is more meaningful. In particular, there are two possible
approaches [14].

85

The first approach finds a minimum bounding box for the object. These
boxes may be subsequently aggregated by use of hierarchies. In such a case,
the minimum bounding boxes may not necessarily be disjoint. The drawback is
that an object is associated with just one bounding box. Thus if we are given a
particular point p, and we search for an object that contains p, then just because
we don' t find an object that contains p in a bounding box b containing p does
not mean that objects in other bounding boxes do not contain p.

An alternative approach decomposes the objects so that the bounding boxes
that contain them are disjoint. Once again, these boxes may be subsequently
aggregated into hierarchies. Now, for each point p there is just one bounding
box b that contains p and if none of the objects in b contain p, then none of
the objects in the database will contain p and the query fails. The drawback is
that an object can be decomposed into several pieces and hence associated with
many boxes. Thus if we want to determine which objects are associated with
a region that spans several bounding boxes, then we may report a particular
object more than once. For such queries we must have a post-processing step
that removes duplicate answers. The process of removing duplicate may require
a process as complex as sorting although, depending on the nature of the object,
other methods may be applicable (e.g., [2]).

The ordering provided by an index is useful for ranking the data based on its
closeness to a particular value v of the attribute a. The ability to perform the
ranking does not depend on whether a record r exists in the database such that
at tr ibute a of r has value v. Value v serves as a reference point for the ranking.

In this paper, we focus on the issue of ranking in spatial databases. For the
moment, assume that we have just one attribute and that it can be locational or
non-locational. In this case the explicit and implicit indexes are equivalent, and
we can derive the ranking directly from the index for the attribute. In particular,
the index is obtained by sorting the data with respect to a particular reference
point (usually the smallest possible value - - e.g., zero for an attribute whose
value is of type ratio). For example, consider the non-locational attr ibute weight
and its corresponding index. Suppose that the database records correspond to
individuals, and we want to find all individuals in the order of the closeness of
their weight to that of John Smith whose weight is 150 pounds. The answer is
computed by looking up the value 150 in the index and then proceeding in two
directions along the index to get the nearest individuals by weight in constant
time. We do not have to rebuild the index if we want to be able to answer the
next query which deals with Sam Jones whose weight is 200 pounds.

In the case of more than one locational attribute all of whose values are
of type distance, we wish to obtain a ranking of the records in terms of their
distance from a particular value v of the locational attributes. If the index is
explicit, then we cannot derive this ranking directly from the index for the
locational attributes. As an example, we could have built an index on the basis
of the distance of the records from a particular reference point P1 using a given
distance metric. However, if we want to obtain the records in order with respect

86

to a new reference point P2, we must resort them. In other words, we cannot
simply say that their distance from P2 is equal to the addition or subtraction
of some constant equal to the distance from P1 to P2 depending on the relative
position of the record with respect to P1 and P2, which is what is done when
there is just one at tr ibute (regardless of whether or not it is locational). Thus we
have to rebuild the index, which is a costly process if we need to do it for each
query. Thus, what is usually done is to use an implicit index such as the one
discussed earlier that is based on sorting the objects with respect to the space
that they occupy rather than with respect to each other or some fixed reference
point.

Ranking queries are frequently used in spatial databases (e.g., in browsing
applications). For example, we may wish to find all the houses in the database in
the order of their distance from a point at location P. Often the desired ranking
is partial. For example, we may wish to find the nearest city of population
greater than 100,000 to Las Vegas. In this case, if we make use of the index
on the locational attributes corresponding to the location of the cities, then we
want to obtain the cities in the order of the cities' distance from Las Vegas. The
population of the cities is examined in increasing order of their distance from Las
Vegas. The process ceases once the condition on the value of the non-locational
population at tr ibute is satisfied. It should be clear that the query to find the
closest city to Las Vegas is also a partial ranking query. Observe that the key
to the utility of the ranking process is that if the closest record does not satisfy
the query condition, then we can continue the search from where we computed
the current answer. We do not restart the search again from reference point of
the index.

In this paper we show how to respond to ranking queries in a spatial database
when the spatial data is organized using an implicit index. There are a number
of possible solutions depending on the nature of the implicit index. We present
a general solution which is designed to minimize the number of blocks of the
underlying decomposition that are examined. In order to be able to analyze its
execution cost, we must have a concrete representation. We choose a represen-
tation that decomposes the objects so that the bounding boxes that contain
them are disjoint. Moreover, we assume a regular decomposition such as that
provided by the PMR quadtree [9]. 0 f course, other representations (e.g., the
t~+-tree [15]) could also have been used as well as an implementation where the
bounding boxes are not disjoint (e.g., an R-tree [6]). Our methods are equally
applicable to these representations.

2 D a t a S t r u c t u r e

As we mentioned earlier, our algorithm was developed for the PMR quadtree but
can be adapted to many other hierarchical spatial data structures that make use
of what we term container block. This term is used here to denote an area in space
which may itself be decomposed further on basis of the number or particular
nature of the spatial objects that it contains. Examples of such structures include

87

R-trees [6], R+-trees [151, and k-d-b-trees [10].
The PMR quadtree uses a regular decomposition of space to index spatial ob-

jects. Each quadtree block is a square, or a hypercube in higher dimensions. Leaf
blocks contain the spatial objects (or pointers to them), whereas non-leaf blocks
are decomposed into 2 d sub-blocks, where d is the number of dimensions. Fig. 1
presents an example two-dimensional PMR quadtree with a splitting threshold
of one where the objects are points representing cities. The cities are inserted
in the order Chicago, Mobile, Toronto, Buffalo, Denver, Omaha, Atlanta, Mi-
ami. The inherent definition of a quadtree is a representation that recursively
decomposes space into congruent blocks until some condition is satisfied. The
retrieval of the blocks that comprise the quadtree is facilitated using a number
of different access structures [13]. The most common access structures are a tree
having four sons at each level (see Fig. lb) or a tree such as a B+-tree [4] that
is based on finding an ordering on the blocks. An example of such an ordering is
that achieved by interleaving the bits comprising the binary representations of
the x and y coordinates of the upper-left corners of each block. These numbers
are then used as keys in the B+-tree. We use the former implementation in the
discussion of our algorithm, although it also works for the latter implementation.

PMR quadtrees differ from other quadtree variants in the way in which ob-
ject insertions trigger decomposition of quadtree blocks. In particular, if, upon
insertion of an object, the number of objects in a leaf block l intersected by the
object exceeds a threshold value s (similar to a bucket capacity but not quite
the same concept), then l is split once and the objects in l are reinserted into
the new sub-blocks of I that they intersect. Note that the number of objects in
a leaf block may exceed the threshold value. However, the number of objects in
a leaf block at depth i is bounded by s + i, assuming there is no limit on the
depth of the tree.

3 Overview of the Algorithm

We present a top-down solution. An alternative is to use a bottom-up solution.
In this case, the algorithm locates the block b containing the query object q and
then finds the nearest object o by examining the adjacent neighboring blocks of
b in a clockwise order. Depending on the nature of the distance metric that is
employed, we m~y have to examine blocks that are not immediately adjacent to
b. This technique is termed bottom-up because we are obtaining the neighbors
using neighbor-finding techniques [12] that do not restart the search at the root
of the tree. In the case of a pointer-based (i.e., a tree) quadtree representation,
they have been shown to visit a constant number of blocks for each neighbor-
finding operation. This method could be very fast especially if o is in block b or
one of the brothers of b. However, it may have to visit all of the blocks around
the node [7]. Worse of all, if we need the next closest object, then we have to
restart the search from the beginning rather than from where we last left off,
making it unsuitable for ranking. In contrast, our algorithm can simply continue
the search from the object it last found.

88

�9 (5,45) (35,,
Denver @iChic~
(27,35) �9
Omaha

(62,77)
Toronto

(82,65)
Buffalo

~2)
Lgo

(8 i,15)
At_anta

D(52,10)
Mobile (90,!

Miam: �9

(a)

Toronto Buffalo D ~

Chicago Omaha

(b)

A

C E

Atlanta Miami

Fig. 1. A PMR quadtree representing points corresponding to cities. (a) The block
decomposition induced by the quadtree, and (b) a tree access structure for the blocks
in (a)

The key to the efficiency of the bottom-up method is that it works on the
principle that if block b is empty, then the three siblings of b must contain at least
s + 1 objects or we would not have decomposed the space. This acts as a pruning
device on the search. However, as we are interested in obtaining a ranking, we
make use of the top-down method. First, we find leaf nodes containing q. We
then use the recursion to keep track of what blocks have already been seen. Once
we visit a leaf node, we also want to remember the objects that we have already
encountered in the block which may still not yet be the closest ones. We achieve
this by modifying the top-down algorithm to maintain a priority queue to record
the blocks whose descendants have not been visited yet as well as the objects
which have not yet been visited.

89

Using the top-down method, it is easy to find a leaf node containing q. Nev-
ertheless, we need to be able to extend this technique to find the nearest object
as the leaf may be empty or the other object in the leaf may be quite far from
the query object. The problem here is that we have to unwind the recursion to
find the nearest object. However, if we want to find the second nearest object,
then the solution becomes even tougher. To resolve this problem, we replace the
recursion stack where the next block to be examined is the block nearest to q
with a priority queue. The key to our solution is that the objects are also stored
in the priority queue. Once a leaf block b is encountered, we a t tempt to insert
the objects stored in b into the priority queue. We can only insert an object o
if it has not already been reported. This can be determined by checking if o's
distance from the query object q is less than the distance of b from q. In this
ease, o was contained in a block c which was closer to q than b, and hence already
processed earlier.

Observe that the data objects as well as the query objects can be of arbitrary
type (e.g., points, rectangles, polygons, etc.). The only requirement is that there
be a distance function between the query object type and the object type stored
in the index (feature metric), and the query object type and the container block
type (block metric). The two distance functions must be consistent with each
other. Consistency means that for a feature f with a distance d from the query
object q, there must exist a block b containing f such that the distance from b to
q is less than or equal to d. This will hold if both distance functions are based on
the same distance metric, of which some common examples are the Euclidean,
Manhat tan and Chessboard metrics. The consistency assumption also means
that the distance from a query object to a block that contains it is zero.

The algorithm works for any dimension, although the examples we give are
restricted to two dimensions. Also the query object need not be in the space of
the dataset.

4 A l g o r i t h m

We first consider a regular recursive top-down traversal of the index to locate
a leaf block containing a query object. Note that there could be more than one
such block. The traversal is initiated with the root block as the second argument.

FINDLEhF(QueryObject, Block)
1 i f QueryObject is in container block Block t h e n
2 if Block is a leaf block t h e n
3 Report leaf block Block
4 else
5 fo r each Child block of container block Block do
6 FINDLEAF(QueryObjecl, Child)
7 e n d d o
8 e n d i f
9 e n d i f

90

The first task is to extend the algorithm to find the nearest object to the
query object. In particular, once the leaf block containing the QueryObject has
been found in line 3, we could start by examining the objects contained in that
block. The object closest to the query object might reside in another quadtree
block. Finding that block may in fact require unwinding the recursion to the
top and descending again deeper into the tree. Furthermore, once that block has
been found, it doesn't aid in finding the next nearest object.

To resolve this dilemma, we replace the recursion stack of the regular top-
down traversal with a priority queue. In addition to using the priority queue for
container blocks, objects are also put on the queue as leaf blocks are processed.
The key used to order the elements on the queue is their distance from a query
object. In order to distinguish between two elements at an equal distance from
the query object, we adopt the convention that blocks are ordered before objects,
while different objects are ordered according to some arbitrary (but unique) rule.
This makes it possible to avoid reporting a particular object more than once,
which is necessary when using a disjoint decomposition where an object may be
associated with more than one block (e.g., PMR quadtree, R+-tree).

A container block is not examined until it reaches the head of the queue. At
this time, all blocks and objects closer to the query object have been looked at.
Initially, the container block spanning the whole index space is the sole element
in the priority queue. In subsequent steps, the element at the head of the queue
(i.e., the closest element not yet examined) is retrieved until the queue has been
emptied.

INC NEAREST(QueryObject, SpatialIndex)
1 Queue (-- NEWPRIORITYQUEUE 0
2 Block *- ROOTBLOCK(SpatiaIIndex)
3 ENQUEUE(Queue, DIsT(Block, QueryObject), Block)
4 while not ISEMPTY(Queue) do
5 Element ~-- DEQUEUE(Queue)
6 ff Element is a spatial object t h e n
7 while Element ---- FIasT(Queue) do
8 DELETEFIRST(Queue)
9 enddo

10 Report Element
11 elslf Element is a leaf block then
12 for each Object in leaf block Element do
13 if DIsw(Object, QueryObject) >_ DIsw(Element, QueryObject) t h e n
14 ENQUEUE(Queue, DISW(Object, QueryObject), Object)
15 end i f
16 e n d d o
17 e l s e /* Element is a non-leaf container block */
18 for each Child block of container block Element in Spatiallndex do
19 ENQUEUE(Queue, DIsT(Child, QueryObject), Child)
20 enddo

91

21 e n d i f
22 e n d d o

Lines 1-3 initialize the quadtree. In line 10, the next closest object is re-
ported. At that point, some other routine (such as a query processor) could take
control, possibly resuming the algorithm at a later time to get the next closest
object, or alternately terminate it if no more objects are desired.

Recall that for some representations, a spatial object may span several con-
tainer blocks. The algorithm must thus guard against objects being reported
more than once [2]. The test (i.e., the i f statement) in line 13 ensures that ob-
jects that have already been reported are not put on the queue agai n . For this to
work properly, blocks must be retrieved from the queue before spatial objects at
the same distance. Otherwise, a feature may be retrieved from the queue before
a block b containing it t h a t is at the same or less distance from the query object.
When the feature then is encountered again in block b, there is no way of know-
ing that it has already been reported. The loop in lines 7-9 eliminate duplicate
instances of an object from the queue. By inducing an ordering on features that
are at the same distance from the query object, all of the instances of an object
will be clustered at the front of the queue when the first instance reaches the
front. The reason we check for duplicates in this manner is that for many rep-
resentations of a priority queue it is not efficient to test for membership. Thus,
the removal of duplicates is largely a byproduct of the algorithm.

We now give an example to illustrate how the algorithm works. Consider
the simple database given in Fig. 2a containing two-dimensional point data.
Assuming a Euclidean distance metric, we want to "find the city closest to the
point (6S ,62) which has a population of at least 1 million". In our scenario,
a query processor interacts with our algorithm to retrieve cities in the order of
their distance from the point. Note that the algorithm inserts a city c into the
queue even if its population is not high enough to satisfy our query condition.
The reason is that checking for the satisfaction of this condition would require
a database access. Such an access might be unnecessary as c's distance from the
query point may result in c not coming to the front of the queue by the time the
algorithm terminates (i.e., by the time enough answers have been output).

Figure 2b shows a PMR quadtree with a splitting threshold value of 1 con-
taining the points corresponding to the cities. Cities with a population of more
than 1 million are denoted with solid dots and the query point is denoted with
with an 'x'. Several concentric circles are drawn around the query point to make
relative distances more obvious. Most of the leaf blocks are labelled with a num-
ber. In the description below, a PMR quadtree block is denoted by its depth
and the label in its North-Westernmost descendant leaf block. The root block is
thus denoted by 0/1 and its NE son by 1/2. The elements in the priority queue
are listed within brackets in the order of their distance from the query point.

Initially, the queue contains only the root block, i.e., [0/1]. In the first step,
the root block is retrieved from the queue, and as it is a non-leaf block, its
sub-blocks are put on the queue: [1/2, 1/13, 1/1, 1/6]. Next, the block 1/2 is
dequeued, and its sub-blocks enqueued: [2/4, 2/5, 1/13, 2/2, 1/1, 2/3, 1/6]. In

92

City Pop.

Atlanta 4,129
Buffalo 764
Chicago 6,532
Denver 1,381
Mobile 504
Omaha 416
:Toronto 904
iMiami 5,250

(a)

POS.

(85,15)
82,65)
35,42)
(5 , 4 5)
52,10)
27,35)
62,77)
90,5)

1

�9
Denver

//
//
/ i

'ii !

t \ \

(27,35) 0 \~
Omaha

9 I0

ii 12

(62,77)
Toronto

2 .-'~

,;</ \
,f(x
t\ ' ,, J

igo

"1-3

O(52,10) Mobile
15

(b)

F i g . 2 . Example data set and nearest neighbor query

 uff lo
i

/ / /
. /

16 (8 ,15)
At Lanta

(90,5
Miami �9

the next step, the leaf block 2/4 is dequeued, but it contains no objects. The leaf
block 2/5, however, contains Buffalo, so Buffalo is inserted in the queue: [1/13,
2/2, 1/1, 2/3, Buffalo, 1/6]. In the next three steps, the sub-blocks of 1/13 are
put on the queue, the leaf 2/13 is retrieved from the queue but contains no
objects, and the city Toronto is enqueued as the leaf block 2/2 is processed:
[1/1, Toronto, 2/14, 2/3, Buffalo, 1/6, 2/15, 2/16]. No action is taken as 1/1
is dequeued since it is empty, but Toronto is the first city to be reported to
the query processor. The query processor discards it as it has a population less
than 1 million and requests the next closest city. The top two elements on the
queue, 2/14 and 2/3, are empty leaf blocks, so no action is taken. Next, Buffalo
is reported to the query processor but its population is too low. At this point,
the queue contains [1/6, 2/15, 2/16]. Now, 1/6 is taken off the queue and its
sub-blocks enqueued, resulting in [2/7, 2/15, 2/16, 2/12, 2/6, 2/11]. The sub-
blocks of 2/7 are then put on the queue, resulting in [3/8, 3/10, 3/7, 3/9, 2/15,
2/16, 2/12, 2/6, 2/11]. The blocks 3/8 and 3/10 are empty, but 3/7 contains
Chicago, so it is put on the queue: [Chicago, 3/9, 2/15, 2/16, 2/12, 2/6, 2/11].
Finally, Chicago is reported to the query processor, which terminates the search
and returns Chicago as the result of the query.

5 A n a l y s i s

Our solution to the problem of finding the nearest object is not more efficient
than other known methods [3, 7]. However, it is more general in several respects.

93

The algorithm presented in [3] only works with point data and relies on a spe-
cialized data structure to achieve optimality in execution time for approximate
nearest neighbor queries. This structure is static and must be rebuilt if more
points are introduced. In addition, it is not amenable to practical implementa-
tion. Thus the authors implemented a greatly simplified data structure (thereby
sacrificing the optimality guarantee of their algorithm while still yielding an ap-
proximate answer) that resembles k-d trees, and also use a priority queue in the
query process. In contrast, our algorithm can be used for arbitrary data objects
as well as a large class of spatial indices. Of course, its level of efficiency may
depend on the type of spatial index used. The main advantage of our method
compared to the one proposed in [7] is that the latter can not be efficiently used
to find several of the nearest objects, only the nearest. Also, that method relies
on a quadtree-like decomposition. The algorithm presented in [11] is limited to
points as query objects and the R-tree as spatial index, although it may possibly
be extended to work for a wider class of query objects and spatial indices.

The algorithm that we presented can be used to find the k nearest neighbors
to a query object. However, in our case, the k is not fixed a-priory. This is in
contrast with the algorithm in [11] for finding k nearest neighbors. In particular,
once it has computed the k nearest neighbors, if the k + 1 st nearest neighbor is
desired, then the algorithm must be restarted anew.

The analysis below, although incomplete, gives an indication of the worst-
case behavior of the algorithm. Various simplifications are made to ease the task.
First, we assume that calculating the distance metric takes a constant amount
of time. This is true for simple objects such as points and lines, but may not be
true for more complex ones (e.g., polygons).

Second, the spatial index is assumed to have some of the properties of the
PMR quadtree. Suppose that there are N objects. For some object types (e.g.,
points, lines) it can be shown that under certain assumptions on the data distri-
bution and the tree depth, the number of blocks in a PMR quadtree is propor-
tional to N [8]. We also assume that the objects in question are already stored
in a spatial index and ignore the cost of the preprocessing needed to build the
index.

In order to complete our analysis of the space requirements of the algorithm,
we need to know the maximum size of the priority queue. Let us consider the
queue at an arbitrary time during the execution of the algorithm, and let d be
the distance from the object at the head of the queue to the query object. All of
the objects in the queue are at a distance of at least d from the query objec t and
are contained in blocks at a distance of at most d from the query object (these
are blocks that have been retrieved from the queue and processed). A worst-case
scenario is such that all leaf blocks containing objects are closer to the query
object than is the nearest object. In this case, all objects will be inserted into the
queue before the nearest one is found. This gives a worst-case bound of O(N)
on the size of the queue. However, this is a pathological case, which is unlikely
to arise. In practice, the maximum size of the queue is much smaller.

If all the objects need to be ranked by their distance from the query object,

94

then the execution time of the algorithm is at worst O(N log M) where N is the
number of leaf blocks in the spatial index and M is the maximum number of
items in the priority queue. This assumes a priority queue implementation where
update operations take O(log M) time. As discussed above, M is O(N) in the
worst case, which gives a bound of O(N log N). This compares favorably with
one-dimensional sorting algorithms.

An alternative solution for ranking all the objects is to compute the distance
for all of them from the query object and then to sort them using a conventional
sorting technique. The cost of this is O (N l o g N) where N is the number of
objects. In contrast, our ranking algorithm has the advantage that it doesn't
have to retrieve all of the objects at once. It is dynamic. Also, we can achieve a
better result than O(N log N) in practice as often we don' t sort on the objects;
instead, we sort on the container blocks. This is quite important when executing
in a disk-based environment as the inspection of a container blocks often does
not require us to examine their contents which may require a disk access.

In our ranking algorithm, container blocks are inserted in the priority queue
even though they may be empty leaf blocks. We could examine blocks before
putt ing them on the queue and just insert the non-empty ones. The problem
here is that if we were executing in a disk-based system, then we would require
a disk access every time we check if a container is empty. In contrast, when we
insert all the blocks into the priority queue without regard to their contents,
we may not have to look at many of them as they may get pruned from the
search by virtue of their distance from the query object (i.e., if the search is
terminated after finding an object closer to the query object). However, if we
want a ranking of all of the objects, then it may be advantageous to inspect blocks
before putt ing them on the queue, since then fewer priority queue operations are
needed in addition to the queue being smaller.

For a partial ranking of the objects, our algorithm visits a minimal number

of container blocks in the sense that given that the k th nearest neighbor is at
a distance of dk from the query object q, only the container blocks that lie
completely or in part within dk of q have had their contents examined by the
time the k nearest neighbors have been found. However, note that all of the
container blocks could be within dk of q, regardless of the value of k. Thus the
worst-ease execution time is the same as for finding a total ranking, O(N log N).

6 C o n c l u s i o n

The algorithm presented in this paper was designed to work in the SAND [1]
spatial database environment, where a PMI~ quadtree is used as the underlying
spatial index. However, the algorithm is not limited to a PMt~ quadtree. It
should work (with minor modifications) for a wide class of spatial indices, that
includes l~-tree variants and k-d-b-trees. We have already successfully adapted
the algorithm to work with an R*-tree index. The basic requirement that a
spatial index must satisfy for the algorithm to be useful is that the spatial index
decomposes space into blocks that are organized hierarchically in a tree-like

95

fashion. Of course, much of our analysis of the execution time of the algorithm
depends on characteristics of the PMtt quadtree, and may change for other
spatial data structures.

References

1. W. G. Aref and H. Samet. Extending a DBMS with spatial operations. In
O. Giinther and It. J. Schek, editors, Advances in Spatial Databases - 2nd Sympo-
sium, SSD'91, pages 299-318, Berlin, 1991. Springer-Verlag. (also Lecture Notes
in Computer Science 525).

2. W. G. Aref and H. Samet. Uniquely reporting spatial objects: yet another opera-
tion for comparing spatial data structures. In Proceedings of the Fifth International
Symposium on Spatial Data Handling, pages 178-189, Charleston, South Carolina,
August 1992.

3. S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal
algorithm for approximate nearest neighbor searching. In Proceedings of the Fifth
Annual A CM-SIAM Symposium on Discrete Algorithms, pages 573-582, Arlington,
VA., January 1994.

4. D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121-137, June
1979.

5. L. M. Goldschlager. Short algorithms for space-filling curves. Software - Practice
and Experience, 11(1):99, January 1981.

6. A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proceed-
ings of the SIGMOD Conference, pages 47-57, Boston, June 1984.

7. E. G. Hoel and It. Samet. Efficient processing of spatial queries in line segment
databases. In O. Gfinther and H. J. Schek, editors, Advances in Spatial Databases
- 2nd Symposium, SSD'91, pages 237-256. Springer-Verlag, Berlin, 1991. (also
Lecture Notes in Computer Science 525).

8. M. Lindenbaum and H. Samet. A probabilistic analysis of trie-based sorting of
large collections of line segments. Department of Computer Science CS-TR-3455,
University of Maryland, College Park, MD, April 1995.

9. R. C. Nelson and H. Samet. A population analysis for hierarchical data structures.
In Proceedings of the SIGMOD Conference, pages 270-277, San Francisco, May
1987.

10. J .T . Robinson. The k-d-b-tree: a search structure for large multidimensional
dynamic indexes. In Proceedings of the SIGMOD Conference, pages 10-18, Ann
Arbor, MI, April 1981.

11. N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In Pro-
ceedings of the 1995 ACM SIGMOD International Conference on Management of
Data, pages 71-79, San Jose, CA, May 1995.

12. H. Samet. Neighbor finding techniques for images represented by quadtrees. Com-
puter Graphics and Image Processing, 18(1):37-57, January 1982.

13. H. Samet. Applications of Spatial Data Structures: Computer Graphics, Image
Processing, and GIS. Addison-Wesley, Heading, MA, 1990.

14. H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Reading, MA, 1990.

15. M. Stonebraker, T. Sellis, and E. Hanson. An analysis of rule indexing implemen-
tations in data base systems. In Proceedings of the First International Conference
on Expert Database Systems, pages 353-364, Charleston, SC, April 1986.

