

CS565: Data Mining

Written Assignment 2

Due Date: October 26th, 2007 at 4:30 PM in the drop box.

Problem 1 (Based on exercises 5.1 and 5.7)

The Apriori algorithm makes use of prior knowledge of subset support properties.

- 1. Given frequent itemset *L* and a subset *s* of *L*, prove formally that the confidence of the rule "f => L-f" cannot be more than the confidence of "s => L-s", where *f* is a subset of *s*.
- 2. A *partitioning* version of Apriori divides the transactions of a database *D* into *n* non-overlapping partitions. Prove that any *itemset* that is frequent in *D* must be frequent in at least one partition in *D*.
- 3. Suppose that all the frequent *itemsets* with minimum support *min_sup* for a large transaction database *D* are saved on a file. At some point, we add a new set of transactions δ into *D*. Discuss how to *efficiently* mine the new database $D + \delta$ to find frequent itemsets using the same minimum support threshold.

Problem 2

Consider the following database of transactions.

TransID	Items Bought
1	{a,b,d,e}
2	{b,c,d}
3	{a,b,d,e}
4	{a,c,d,e}
5	$\{b,c,d,e\}$
6	{b,d,e}
7	$\{c,d,f\}$
8	$\{a,b,c,f\}$
9	{a,d,e}
10	{b,d}

Assuming that $min_sup = 30\%$ (i.e. an itmeset is frequent if it appears in at least 3 transactions), use the FP-growth algorithm to generate all the frequent itemsets. Show the FP-tree, the conditional FP-trees and the frequent itemsets. Also, give the maximal frequent itemsets.

Problem 3

Consider a database that stores records with four attributes *A*, *B*, *C* and *Class*. The first three attributes are categorical attributes and the fourth is a class attribute. Build a Naive Bayesian Classifier (NBC) using the following training set:

Α	В	С	Class
A1	B2	C1	Р
A2	B1	C2	Ν
A1	B1	C2	Ν
A1	B2	C1	Р
A2	B3	C2	Ν
A3	B1	C1	Р
A1	B3	C1	Ν
A3	B3	C1	Р
A2	B2	C2	Ν
A1	B3	C2	Р
A2	B2	C1	Р
A3	B1	C2	Р
A3	B2	C2	Ν
A3	B1	C1	Р

Using the NBC that you created, decide the class of the following records: R1=[A2, B1, C1], R2=[A3, B1, C2] and R3=[A1,B1,C1]

Problem 4

Given the following database below:

Χ	Y	Ζ	Class
15	1	A1	Ν
20	3	A2	Р
25	2	A1	Ν
30	4	A1	Ν
35	2	A2	Р
25	4	A1	Ν
15	2	A2	Р
20	4	A1	Р

build the complete decision tree using binary splits and gini index.

Then, compute the accuracy of the classifier on the following testing dataset.

X	Y	Ζ	Class
10	2	A1	Р
20	1	A2	Ν
30	3	A1	Р
40	2	A2	Р