
Solutions for AS3

February 24, 2010

Problem 1

[81x]43 = [81]43 · [x]43 = [38]43 · [x]43 = [1]43
As (38,43)=1 ∃x, k, 38x + 43k = 1.
Using the extended Euclidean algorithm you can solve for x and k to get, x=17, k = −15.
It follows that x=17 is the correct value.

Problem 2

In Z11:
inverse of [2]: [6]
inverse of [4]: [3]
inverse of [5]: [9]
inverse of [7]: [8]

Problem 3

In Z14: ab ≡ 1 (mod 14) and gcd(a, 14) = 1
Numbers could have inverse are: 1, 3, 5, 9, 11, 13
[1] has inverse [1]
[3] has inverse [5], so [5] has inverse [3],
[9] has inverse [11], so [11] has inverse [9],
[13] has inverse [13]

Problem 4

Given a, b, k and n we can use the division algorithm to divide the integer a − b by nk to
obtain integers k1 and c with a − b = k1nk + c, where 0 ≤ c < nk.
Then a mod n = (k1nk + b + c) mod n = (b + c) mod n, because a ≡ b (mod n), we have n|c.
Similarly, a mod k = (k1nk + b + c) mod k = (b + c) mod k, because a ≡ b (mod k), we have
k|c.
Since gcd(n, k) = 1 it must be the case that nk|c, as n and k have no common factors. But
as 0 ≤ c < nk, it must be the case that c = 0, and so a = k1nk + b, or a ≡ b (mod nk).
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Problem 5

x2 ≡ 1 (mod p) ⇒ (x2 − 1) ≡ 0 (mod p) ⇒ (x + 1)(x − 1) ≡ 0 (mod p)
Hence we have (x + 1) ≡ 0 (mod p) or (x − 1) ≡ 0 (mod p), since p is prime.
That is x ≡ −1 (mod p) or x ≡ 1 (mod p).

Problem 6

We are given that gcd(a, m) = d > 1, and so a = kad and m = kmd, for some integers k − a

and km.
Now assume that ax ≡ 1 (mod m) is solvable for some x > 0, and we will derive a contra-
diction.
ax ≡ 1 (mod m) yields ax ≡ (kad)x ≡ 1 (mod m).
But then this tells us (kad)x − 1 = kmdk′ for some k’, which implies (kad)x − kmdk′ = 1,
and as d divides the left hand side of this equation we must have d divides 1. This can only
happen if d = 1 which contradicts our assumption that d>1.
Hence ax ≡ 1(modm) must not have a solution.
Problem 7

For any integer x, we can always write x = 2w if x is even, or x = 2w + 1 if x is odd.
When x is even, x2 ≡ (2w)2 ≡ 4w2 ≡ 0 (mod 4).
When x is odd, x2 ≡ (2w + 1)2 ≡ 4w2 + 4w + 1 ≡ 1 (mod 4).
But 4z − 1 ≡ −1 (mod 4). So x2 = 4z − 1 has no integer solution.

Problem 8

First, to see that there is a solution, it is a good idea to try a smaller example.
For example take the order sizes to be 3 and 7 instead of 9 and 20.
Here it is pretty easy to see that any number of wings bigger than 11 can be ordered exactly.
WHY?? Because you can order 12 wings (12=3+3+3+3), 13 wings (13=7+3+3) and 14
wings (14=7+7) exactly, and then just adding 3 to each of these gives 15, 16 and 17 wings,
and 3 to each of these, etc. Finally, it is easy to see you cannot order 11 wings using 3’s and
7’s. So 11 is the largest number of chicken wings you cannot order exactly.

Now, how about 9 and 20 ? Well, this is harder. But the right answer is 151, as you can
check that the 9 numbers from 152 to 160 can all be obtained exactly using wing orders of
size 9 and 20, and then any order of size greater than 160 can be obtained by adding some
number of orders of size 9 to the orders between 152 and 160. Finally, you need to check you
cannot order 151 wings exactly, a fact that takes some time to check. How do you arrive at
151 as the answer ? Well, this is a bit harder, but start with the fact that (9,20)=1 and use
Bezout’s Identity.

In fact, the result is for any order of size a and b, when (a,b) = 1 then there is a largest
number of wings you cannot order. However, when (a,b) > 1 then there is no such largest
number. Try, for example, orders of size 4 and 6. Then any order composed from these has
even size, so no odd sized orders can be exactly obtained.
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Problem 9

Primitive element of Z11: 2
{0, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024} ≡ {0, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1}(mod11).

Problem 10

Let S be a complete set of representatives for Zm, say S = {s0, s1, s2, ..., sm−1}. Then by
definition of complete set of representatives for Zm, each of the si’s is different (mod m).

Now aS = {as0, as1, as2, ..., asm−1}, and we need to prove that each of the asi’s in aS is
different (mod m).

We will assume this is false and get a contradiction. So assume there are two different
elements asi and asj is aS with asi ≡ asj (mod m). Now we use the given assumption that
(a,m)=1. From this we know that in Zm a has a multiplicative inverse. That is, there is a
number b in Zm such that ba ≡ 1 (mod n).

Now have asi ≡ asj (mod m). Multiply both sides of this equation by b obtaining,
basi ≡ basj (mod m). Since ba ≡ 1 (mod n) this gives si ≡ sj (mod m), contradicting the
fast that each of the si’s is different (mod m) and proving our claim.
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