Solutions for AS1

February 2, 2010

Problem 1

We have $a \mid b$ so b = ja, for some j.

We have a | c so c = ka, for some k.

Let d = (b,c), then by Bezout's Lemma, there are integers x and y with d = bx + cy.

So substituting from above, d = bx + cy = jax + kay = a(jx+ky).

Hence, since a | a(jx+ky), a | d as desired.

Problem 2

False.

For example, a = 10, b = 4, c = 5.

Problem 3

Base case: $n = 1, 1 + 2^1 = 3$, and $2^{1+1} - 1 = 3$.

Assume for some k > 1, the claim is true, and we have $1 + 2^1 + 2^2 + ... + 2^k = 2^{k+1} - 1$. Then for k + 1, we have $1 + 2^1 + 2^2 + ... + 2^k + 2^{k+1} = 2^{k+1} - 1 + 2^{k+1} = 2^{k+2} - 1$. The claim is proven.

Problem 4

If $a|b, \exists c, b = ca. (a, b) = (a, ca) = a(1, c) = a$.

Problem 5

gcd of $2^7 3^2 4^5 5^6 6^5$ and $2^4 3^5 4^3 5^3 6^7$

 $(2^{7}3^{2}4^{5}5^{6}6^{5}, 2^{4}3^{5}4^{3}5^{3}6^{7}) = 2^{4}3^{2}4^{3}5^{3}6^{5}(2^{3}4^{2}5^{3}, 3^{3}6^{2}) = 2^{4}3^{2}4^{3}5^{3}6^{5}(2^{7}5^{3}, 3^{5}2^{2}) = 2^{6}3^{2}4^{3}5^{3}6^{5}(2^{5}5^{3}, 3^{5}) = 2^{6}3^{2}4^{3}5^{3}6^{5}$

Problem 6

Let $a = cp^3$, $b = dp^3$, from Bezout's Lemma, $\exists j, k \in \mathbb{Z}$, such that $p^3 = aj + bk = cp^3j + dp^3k$, 1 = cj + dk, it is equivalent to 1 = (c,d). We can write $c = p_1^{k_1} ... p_n^{k_n}$, and $d = p_1'^{k'_1} ... p_m'^{k'_m}$, where $p_1, ... p_n$ are different primes from $p'_1, ..., p'_m$. $c^2 = p_1^{2k_1} ... p_n^{2k_n}$, and $d^2 = p_1'^{2k'_1} ... p_m'^{2k'_m}$. We can see that $(c^2, d^2) = 1$. $(a^2, b^2) = (c^2 p^6, d^2 p^6) = p^6(c^2, d^2) = p^6$. **Problem 7**

As long as $(a, b) = p_1$, $(b, c) = p_2$, $(a, c) = p_3$, and p_1 , p_2 and p_3 are different primes, let $a = p_1p_3$, $b = p_1p_2$ and $c = p_2p_3$, then (a, b, c) = 1. It is easy to prove it, $(a, b, c) = ((a, b), c) = (p_1, p_2p_3) = 1$.

Problem 8

(a,m) = d, (b,m) = 1, let $a = dk_1, m = dk_2$, then we have $(a,m) = (dk_1, dk_2) = d(k_1, k_2) = d$, and $(k_1, k_2) = 1$. (b,m) = 1, from Bezout's Lemma, we have $\exists j, k \in \mathbb{Z}$, such that $1 = bj + mk = bj + k_2dk$, so $(b, k_2) = 1$. If we represent b, k_1, k_2 in prime factors form, b and k_1 have different prime factors from k_2 , so we have $(bk_1, k_2) = 1$.

 $(ab, m) = (dk_1b, dk_2) = d(k_1b, k_2) = d.$