11 A MIN-CUT ALGORITHM

performance. The randomized sorting algorithm described above is an exam-
ple. This book presents many other randomized algorithms that enjoy these

-order advantages.
formly In the next few sections, we will illustrate some basic ideas from probability
theory using simple applications to randomized algorithms. The reader wishing
; to review some of the background material on the analysis of algorithms or on |
2dQS. ;‘ elementary probability theory is referred to the Appendices. |
\ that
n' any ‘
mized ‘ 1.1. A Min-Cut Algorithm
. The ‘ ‘
jolves - : Two events &; and &, are said to be independent if the probability that they
both occur is given by . :
;;ruetlg' Pr£1 1 £3] = Prl€y] x Pr[€s] (14) ~
rithm, (see Appendix C). In the more general case where £ 1 and &, are not necessarﬂy
rithm : independent,
. with |
16 for Pr(£1 N &) = PrlE | £3] X Pr[€5] = Pr[€, | £4] x Pr[E4], (L.5)
where Pr[€; | £5] denotes the conditional probability of £, given £,. Sometimes, ¢ I3
of the when a collection of events is not independent, a convenient method for com- .
prove _ puting the probability of their intersection is to use the following generalization i
every i
, Pr(n £] = Pri&y] X Pri€s | £1] x Pr[€s | 1N E] - Prlgy | NSlEL (16) ;
rn?;zg Consider a graph-theoretic example. Let G be a connected, undirected multi- }
‘ graph with n vertices. A multigraph may contain multiple edges between any pair
wdent, .) . . j
sence ~ gf vertices. A cut in Gis a set of edges whqse removal rejs1‘11ts in G be}ng .broken |
osing into two or more compopents. A mintcut is a cut of minimum cardinality. We .
1 the ‘ now study a simple algc?nthm for ﬁndmg a mln-c.ut of a graph.
! bits, ; We repeat the following step: pick an edge uniformly at random and merge
£ the two vertices at its end-points (Figure 1.1). If as a result there are several
rom .) .
sually ‘ edges betweep some pairs of (newly formed) vertices, retain them all. Edges
o the ; between vertices that.are merged are remoyed, so that thereAare never any
u;lves 7 ' self-loops. We refer to this process of merging the two end-points of an edge
. ‘ into a single vertex as the contraction of that edge. With each contraction, the
tional . N s
ution. number of Ve.rt1ces of G decreases by one. Thq cr1.1c1a1 obsgw.atlon is that an
o bits » : edgg contraction does nqt reduce. the mm-gut size in G. ThlS. is because every
) (see cut in the graph at any intermediate stage is a cut in the original graph. The
algorithm continues the contraction process until only two vertices remain; at. ‘
st is , this pointZ the set‘ of edges between these two vertices is a cut in G and is output !
1 the asa candlqate mn.l—cut. . . .
s are Does. this algorithm always find a mln-cut? Let us analyze its behavior after |
rable | , first reviewing some elementary definitions from graph theory. |
7 |

INTRODUCTION

1,2

2 3

Figure 1.1: A step in the min-cut algorithm; the effect of contracting edge ¢ = (1,2) is
shown.

b Definition 1.1: For any vertex v in a multigraph G, the neighborhood of v,
denoted I'(v), is the set of vertices of G that are adjacent to v. The degree of v,
denoted d(v), is the number of edges incident on v. For a set S of vertices of G,
the neighborhood of §, denoted I'(S), is the union of the neighborhoods of thé
constituent vertices. '

‘Note that d(v) is the same as the cardinality of I'(v) when there are no self-loops

or multiple edges between v and any of its neighbors.

Let k be the min-cut size. We fix our attention on a particular min-cut C with
k edges. Clearly G has at least kn/2 edges; otherwise there would be a vertex of
degree less than k, and its incident edges would be a min-cut of size less than k.
We will bound from below the probability that no edge of C is ever contracted
during an execution of the algorithm, so that the edges surviving till the end are
exactly the edges in C.

Let &; denote the event of not picking an edge of C at the ith step, for
1 <i < n—2. The probability that the edge randomly chosen in the first step is in
C is at most k/(nk/2) = 2/n, so that Pr[€;] > 1 —2/n. Assuming that £; occurs,
during the second step there are at least k(n — 1)/2 edges, so the probability of
picking an edge in C is at most 2/(n — 1), so that Pr[&, | €] = 1 —2/(n— 1).
At the ith step, the number of remaining vertices is n — i + 1. The size of the
min-cut is still at least k, so the graph has at least k(n—i+1)/2 edges remaining
at this step. Thus, Pr[&; | ﬂj;llc‘} 1 =1—2/(n—i+1). What is the probability
that no edge of C is ever picked in the process? We invoke (1.6) to obtain

Pr[N22&] = <1 - > =)
! " n—i+1 nn—1)

The probability of discovering a particular min-cut (which may in fact be
the unique min-cut in G) is larger than 2/n®. Thus our algorithm may err

in declaring the cut it outputs to be a min-cut. Suppose we were to repeat

the above algorithm n?/2 times, making independent random choices each
time. By (1.4), the probability that a min-cut is not found in any of the n?/2

8

attempts is at

By this proces!:
ure from 1—72;
will make the
that repetitior

Note the e -
ied. In contri-
network flow:
return to the
have been gl
that a varian
cantly smalles.

Exercise 1.2: |
a random edge¢
into a single \:
modified algor :

The randomi: -
different type -
the correct so
time, whose i’
algorithm.

In contrast
incorrect. Ho !
solution. We «
observed a us
repeatedly wii
can be made : -
examples of a
solution are r
Carlo algoritk
instance is YE
with one-sided
said to have t
outputs either
it errs is zero

1.2 LAS VEGAS AND MONTE CARLO

attempts is at most

/2 ‘
<1 - ;22—> <1/e.

By this process of repetition, we have managed to reduce the probability of fail-
ure from 1—2/n* to a more respectable 1/e. Further executions of the algorithm
will make the failure probability arbitrarily small — the only consideration being
that repetitions increase the running time.

Note the extreme simplicity of the randomized algorithm we have just stud-
ied. In contrast, most deterministic algorithms for this problem are based on
network flows and are considerably more complicated. In Section 10.2 we will
return to the min-cut problem and fill in some implementation details that
have been glossed over in the above presentation; in fact, it will be shown
that a variant of this algorithm has an expected running time that is signifi-
cantly smaller than that of the best known algorithms based on network fow.

Exercise 1.2: Suppose that at each step of our min-cut algorithm, instead of choosing
a random edge for contraction we choose two vertices at random and coalesce them
into a single vertex. Show that there are inpuis on which the probability that this
modified algorithm finds a min-cut is exponentially small.

1.2. Las Vegas and Monte Carlo

The randomized sorting algorithm and the min-cut algorithm exemplify two
different types of randomized algorithms. The sorting algorithm always gives
the correct solution. The only variation from one run to another is its running
time, whose distribution we study. We call such an algorithm a Las Vegas
algorithm.

In contrast, the min-cut algorithm may sometimes produce a solution that is
incorrect. However, we are able to bound the probability of such an incorrect
solution. We call such an algorithm a Monte Carlo algorithm. In Section 1.1 we
observed a useful property of a Monte Carlo algorithm: if the algorithm is run
repeatedly with independent random choices each time, the failure probability
can be made arbitrarily small, at the expense of running time. Later, we will see
examples of algorithms in which both the running time and the quality of the
solution are random variables; sometimes these are also referred to as Monte
Carlo algorithms. For decision problems (problems for which the answer to an
instance is YES or NoO), there are two kinds of Monte Carlo algorithms: those
with one-sided error, and those with two-sided error. A Monte Carlo algorithm is
said to have two-sided error if there is a non-zero probability that it errs when it
outputs either YES or No. It is said to have one-sided error if the probability that
it errs is zero for at least one of the possible outputs (YES/No) that it produces.

g

tic

S,
‘re

of
ed
of

c)-
d”

CHAPTER 7

Algebraic Techniques

SoME of the most notable results in theoretical computer science, particularly
in complexity theory, have involved a non-trivial use of algebraic techniques
combined with randomization. In this chapter we describe some basic random-
ization techniques with an underlying algebraic flavor. We begin by describing
Freivalds’ technique for the verification of identities involving matrices, polyno-
mials, and integers. We describe how this generalizes to the Schwartz-Zippel
technique for identities involving multivariate polynomials, and we illustrate this
technique by applying it to the problem of detecting the existence of perfect
matchings in graphs. Then we present a related technique that leads to an effi-
cient randomized algorithm for pattern matching in strings. We conclude with
some complexity-theoretic applications of the techniques introduced here. In
particular, we define interactive proof systems and demonstrate such systems for
the graph non-isomorphism problem and the problem of counting the number of
satisfying truth assignments for a Boolean formula. We then refine this concept
into that of an efficiently verifiable proof and demonstrate such proofs for the
satisfiability problem. We indicate how these concepts have led to a completely
different view of classical complexity classes, as well as the new results obtained
via the resulting insight into the structure of these classes.

Most of these techniques and their applications involve (sometimes indirectly)
a fingerprinting mechanism, which can be described as follows. Consider the
problem of deciding the equality of two elements x and y drawn from a large
universe U. Under any “reasonable” model of computation, testing the equality
of x and y then has a deterministic complexity of at least log |U|. An alternative
approach is to pick a random mapping from U into a significantly smaller
universe ¥ in such a way that there is a good chance that x and y are identical
if and only if their images are identical. The images of x and y are their
fingerprints, and their equality can be verified in log|V| time by comparing the
fingerprints.

Throughout this chapter we will be working over some unspecified field IF.
Part of the reason we do not explicitly specify the underlying field is that

161

ALGEBRAIC TECHNIQUES

typically the randomization will involve uniform sampling from a finite subset
of the field; in such cases, we do not have to worry about whether the field is
finite or not. The reader may find it helpful to think of IF as the field @ of the
rational numbers; when we restrict ourselves to finite fields, it may be useful to
assume that IF is Z,, the field of integers modulo some prime number p. We will
use the unit-cost RAM model from Section 1.5.1 to measure the running time
of an algorithm over the field IF. In this model each field operation (addition,
subtraction, multiplication, division, comparison, or choosing a random element)
takes unit time, provided the operand magnitude is polynomially related to the
input size. For example, over the field of rationals we will assume that operations
involving O(log n)-bit numbers take unit time. This is not completely realistic
as arithmetic operations are significantly more expensive in practice. However,
in most applications described below this small additional factor in the running
time is inconsequential, and we would get essentially the same result in the more
expensive model. T

7.1. Fingerprinting and Freivalds’ Technique

We illustrate fingerprinting by describing a technique for verifying matrix mul-
tiplication. The fastest known algorithm for matrix multiplication runs in time
O(n*?7%), which improves significantly on the obvious O(n?) time algorithm but
has the disadvantage of being extremely complicated. Suppose we are given an
implementation of this algorithm and would like to verify its correctness. Since
program verification is a difficult task, a reasonable goal might be to verify
the correctness of the output produced on specific executions of the algorithm.
(Such verification on specific inputs has been studied in the theory of program
checking.) In other words, given n x n matrices A, B, and C over the field FF,
we would like to verify that AB = C. We cannot afford to use a simpler but
slower algorithm for matrix multiplication to verify the output C, as this would
defeat the purpose of using the fast matrix multiplication algorithm. Moreover,
we would like to use the fact that we do not have to compute C; rather, our
task is to verify that this product is indeed C. The following technique, known
as Freivalds’ technique, provides an elegant solution. It gives an O(nz) time
randomized algorithm with a bounded error probability. -

The randomized algorithm first chooses a random vector r € {0,1}"; each
component of r is chosen independently and uniformly at random from 0 and 1,
the additive and multiplicative identities of the field IF. We can compute x = Br,
Yy =Ax = ABr, and z = Cr in O(n?) time; clearly, if AB = C then y =z

We now show that for 4B + C, the probability that y # z is at least 1 /2. The _

algorithm errs only if AB + C but Y and z turn out to be 'equalt

Theorem 7.1: Let A, B, and C be n x n matrices over IF such that AB # C.
Then for r chosen uniformly at random Srom {0,1}", Pr[ABr = Cr] < 1 /2.

162

|

[

m oA

[

B

[T e |

T o m

—h
~

Vi

N

72 VERIFYING POLYNOMIAL IDENTITIES

PROOF: Let D = AB — C; we know that D is not the all-zeroes matrix. We
wish to bound the probability that y = z, or, equivalently, the probability that
Dr = 0. Without loss of generality, we may assume that the first row in D has
a non-zero entry, and that all the non-zero entries in that row precede the zero
entries. Let 4 be the vector consisting of the entries from the first row in D, and
assume that the first k > O entries in 4 are non-zero. We concentrate on the
probability that the inner product of d and r is non-zero; since the first entry in
Dr is exactly d”r, this yields a lower bound on the probability that y + z.
Now, the inner product d”r = 0 if and only if
k v
yy = Z i (7.1)
dy

We invoke the Principle of Deferred Decisions (Section 3.5) and assume that all
the other random entries in r are chosen before ;. Then the right-hand side
of (7.1) is fixed at some value v € IF. Since 7 is uniformly distributed over a set
of size 2, the probability that it equals v cannot exceed 1/2. O

¢

Exercise 7.1: Verify that there is nothing magical about choosing » to have only
entries drawn from {0, 1}. In fact, any two elements of IF may be used instead.

Thus, in O(n?) time we have reduced the matrix product verification problem
to that of verifying the equality of two vectors, and the latter can be done in
O(n) time. This gives an overall running time of O(n?) for this Monte Carlo
procedure. The probability of error can be reduced to 1/2* by performing k
independent iterations. The following exercise gives an alternative approach to
reducing the probability of error.

Exercise 7.2: Suppose that each component of r is chosen uniformly and indepen-
dently from some subset § < IF. Show that the probability of error in the verification
procedure is no more than 1/|S|. Compare the usefulness of the two different methods
for reducing the error probability.

Freivalds’ technique is applicable to verifying any matrix identity X = Y. Of
course, if X and ¥ are explicitly provided, just comparing their entries takes
only O(n?) time. But as in the case of matrix multiplication, there are situations
where computing X explicitly is expensive (or even infeasible, as we will see in
Section 7.8), whereas computing Xr is easy.

7.2. Verifying Polynomial Identities

Freivalds’ technique is fairly general in that it can be applied to the verification
of several different kinds of identities. In this section we show that it also applies

163

ALGEBRAIC TECHNIQUES

to the verification of identities involving polynomials. Two polynomials P(x)
and Q(x) are said to be equal if they have the same coefficients for corresponding
powers of x. Verifying identities of integers, or, in general, strings over any fixed
alphabet, is a special case since we can represent any string of length n as a
polynomial of degree n. This is achieved by treating the kth element in the string
as the coefficient of the kth power of a symbolic variable.

We first consider the polynomial product verification problem: given polyno-
mials Py(x), Py(x), Ps(x) € IF[x], verify that P;(x) x P,(x) = P3(x). Assume that

‘the polynomials P;(x) and P,(x) are of degree at most n; then P3(x) cannot have

degree exceeding 2n. Polynomials of degree n can be multiplied in O(nlogn)
time using Fast Fourier Transforms, whereas the evaluation of a polynomial at
a fixed point requires O(n) time.

The basic idea underlying the randomized algorithm for polynomial product

verification is similar in spirit to the algorithm for matrices. Let S < IF be a set _

of size at least 2n+ 1. Pick r € S uniformly at random and evaluate Py(r), Py(r),
and P;(r) in O(n) time. The polynomial identity Pyi(x)P;(x) = P3(x) is declared
correct unless Py(r)P,(r) # P3(r). This algorithm errs only when the polynomial
identity is false but the evaluation of the polynomials at r fails to detect this.

Define the polynomial Q(x) = Py(x)P,(x) — Ps(x) of degree 2n. We say that
a polynomial P is identically zero, or P = 0, if all of its coefficients are zero.
Clearly, Q(x) is identically zero if and only if the polynomial product is correct.
We complete the analysis of the randomized verification algorithm by showing
that if Q(x) # 0, then with high probability Q(r) = Py(r)Py(r) — Ps(r) = O.
Elementary algebra tells us that Q can have at most 2n distinct roots. Hence,
unless Q = 0, not more that 2n different choices of r € S will have o) = 0.
Thus, the probability of error is at most 2n/|S|. This probability can be reduced
by either using independent iterations of the entire algorithm or by choosing a
sufficiently large set S.

In the case where IF is an infinite field (such as the reals), the error probability
can be reduced to 0 by choosing r uniformly from the entire field IF. Unfortu-
nately, this requires an infinite number of random bits! We could also use a

deterministic version of this algorithm where each choice of r € § is tried once. -

But this requires 2n + 1 different evaluations of each polynomial, and the best
algorithm for this requires ®(nlog?n) time, which is more than the time required
t0 actually multiply P;(x) and P,(x).

This verification procedure is not restricted to polynomial product verification.
Itis a generic procedure for testing any polynomial identity of the form P;(x) =
Py(x), by transforming it into the identity Q(x) = Py(x) — Py(x) = 0. Obviously,
if the polynomials P, and P, are explicitly provided, we can perform this task
deterministically in O(n) time by comparing corresponding coefficients. The
randomized algorithm will take as long to just evaluate the polynomials at
a random point. However, the verification procedure pays off in situations
where the polynomials are provided implicitly, such as when we have only a
“black box” for computing the polynomial, with no means of accessing its
coefficients. There are also situations where the polynomials are provided in

164

.

W

72 VERIFYING POLYNOMIAL IDENTITIES

a form where computing the actual coefficients is exceedingly expensive. One
example is provided by the following problem concerning the determinant of a
symbolic matrix; in fact, this problem will turn out to be the same as that of
verifying a polynomial identity involving multivariate polynomials, necessitating
a generalization of the idea used for univariate polynomials.

Let M be an n X n matrix. The determinant of M is defined by

n
det(M) = > sgn(m) [[Mgy, (7.2)
nES, i=1

where S, is the symmetric group of permutations of size n, and sgn(n) is the
sign of the permutation n. Recall that sgn(n) = (—1)!, where ¢ is the number of
pairwise element exchanges required to transform the identity permutation into
7. Although the determinant has n! terms, it can be evaluated in polynomial
time given explicit values for the matrix entries M;;. '

p Definition 7.1: The Vandermonde matrix M(xy,...,x,) is defined in terms of the
indeterminates xi, ..., X, such that M;; = x{_l, that is ’

1
1

1 oxg x2 ... X}~
1 x x5 ... x§~

n—1
n

Xn X2 x

Vandermonde’s identity states that for this matrix M, det(M) = [],,(x;—x;).
Suppose that we did not have a proof of this identity and would like to verify it
efficiently. Computing the determinant of this symboli¢ matrix is ‘prohibitively
expensive since it has n! terms. Instead, we will formulate this as the problem of
verifying that the polynomial Q(xy,...,x,) = det(M)—[];,(x; —x;) is identically
zero, Drawing upon our experience with Freivalds’ technique, it seems natural to
substitute random values for each x; and check whether Q = 0. The polynomial
Q is easy to evaluate at a specific point since the determinant can be computed
in polynomial time for specified values of the variables xi,..., X,. '

We formalize this intuition by extending the analysis of Freivalds’ technique
for univariate polynomial identity verification to the multivariate case. In a
multivariate polynomial Q(x1,..., x,), the degree of any term is the sum of the
exponents of the variables, and the fotal degree of Q is the maximum of the

degrees of its terms.

Theorem 7.2 (Schwartz-Zippel Theorem): Let Q(xy,...,x,) € Flxy,...,x,] be
a multivariate polynomial of total degree d. Fix any finite set S = IF, and let
r1i,...,ty be chosen independently and uniformly at random from S. Then

Pr[Q(s, ., 1) = 0 Qxy.,) 0] < TgT

165

ALGEBRAIC TECHNIQUES

- prooF: The proof is by induction on the number of variables n. The base

case n = 1 involves a univariate polynomial Q(x;) of degree d, and by the
preceding discussion we already know that for Q(x;) # 0, the probability that
Q(r1) = 0 is at most d/|S|. Assume now that the induction hypothesis is true
for a multivariate polynomial with up to n— 1 variables, for n > 1.

Consider the polynomial Q(xy,...,x,), and factor out the variable x; to obtain

k
O, %n) = D X1Qi(xz, ., %),
=0
where k < d is the largest exponent of x; in Q. (Assume that x; affects Q, so that
k > 0). The coefficient of x¥, Qk(x2,...,X,), is not identically zero by our choice
of k. Since the total degree of Qy is at most d —k, the induction hypothesis
implies that the probability that Qx(rz,...,7,) = 0 is at most (d—k)/18S|.
Suppose that Qx(r2, ..., 7») # 0. Consider the following univariate polynomial:

k ,
Q(xl) = Q(xly F2, 73,000, rn) = Z xilQi(r27 ey rn)'
=0
The polynomial g(x;) has degree k, and it is not identically zero since the
coefficient of x¥ is Qk(rs,...,7). The base case now implies that the probability
that q(r{) = Q(r1,72,...,1,) evaluates to 0 is at most k/[S|.
Thus, we have shown the following two inequalities.
d—k
S| °
» k
Pr[O(r1, 72, 7n) = 0| Qilra,..., 1) # 0] < Sk

Pr[Qi(r,...,1a) =0] <

Invoking the result in Exercise 7.3, we find that the probability that
Q(ri,72,...,ry) = 0 is no more than the sum of these two probabilities, which is
d/|S|. This completes the induction. 0

Exercise 7.3: Show that for any two evenis £ and &,

Pr[&4] < Pr{€+ | E2] + Prl€al].

The randomized verification procedure for polynomials' has one potential
problem. In the case of infinite fields, the intermediate results in the evaluation
of the polynomial could involve enormous values. This problem can be avoided
in the case of integers by performing all the computations modulo a small
random prime number, without adversely affecting the error probability. We
will return to this issue in Example 7.1. ‘

As suggested in Problem 7.1, Theorem 7.2 can be viewed as a generalization
of Freivalds’ technique from Section 7.1. A generalized version of this theorem
is described in Problem 7.6.

166

Re !
ma

be

PR

Sir
tio
zel
the

(tt

the
thr -
tw

th ©
de
th
ce
th

rase

the
that
true

tain

that
oice
1esis

11al:

the

ility

that
ch is

73 PERFECT MATCHINGS IN GRAPHS

7.3. Perfect Matchings in Graphs

We illustrate the power of the techniques of Section 7.2 by giving a fascinating
application. Consider a bipartite graph G(U, V, E) with the independent sets of
vertices U = {uy,...,u,} and V = {vy,...,v,}. A matching is a collection of edges
M < E such that each vertex occurs at most once in M. A perfect matching
is a matching of size n. Each perfect matching M in G can be viewed as a

permutation from U into V. More precisely, the perfect matchings in G can be -

put into a one-to-one correspondence with the permutations in S,, where the
matching corresponding to a permutation n € S, is given by the pairs (u;, vx(;)),
for 1 <i < n. The following theorem draws a connection between determinants
and matchings.

Theorem 7.3 (Edmonds’ Theorem): Let A be the n X n matrix obtained from
G(U,V,E) as follows:
A=) il (ui,v;) € E

v 0 (uv)¢E
Define the multivariate polynomial Q(x11,%12,...,%m) as being equal to det(A).
Then, G has a perfect matching if and only if Q 0.

Remark: The matrix of indeterminates is sometimes referred to as the Edmonds
matrix of a bipartite graph. We do not explicitly specify the underlying field
because any field will do for the purposes of this theorem.

PROOF: The determinant of A4 is given by

det(d) =) sgn(m) A1y Azae) - - Anatn)
neS, .
Since each indeterminate x;; occurs at most once in A4, there can be no cancella-
tion of the terms in the summation. Therefore the determinant is not identically
zero if and only if there is a permutation 7 for which the corresponding term in
the summation is non-zero. The latter happens if and only if each of the entries
Ajz, for 1 < i < n, is non-zero. This is equivalent to having a perfect matching
(the one corresponding to «) in G. O

We can now construct a simple randomized test for the existence of perfect
matchings. Using the algorithm from Section 7.2, we can determine whether
the determinant is identically zero ot not. The time required is dominated by
the cost of computing a determinant, which is essentially that of multiplying
two matrices. As it turns out, there are algorithms for constructing a maximum

‘matching in a graph in time O (m./n), where m = |E|. Since the time to compute

the determinant exceeds m\/ﬁ for small m, the payoff in using this randomized
decision procedure is marginal at best. However, we will see later (in Section 12.4)
that this decision procedure is essential for devising a fast parallel algorithm for
computing a maximum matching in a graph. In Problem 7.8 we will see that
this technique also applies to the case of non-bipartite graphs.

167

