0.1 PRI UICIVAI L S8k W W TALAL ALY B i A N/ EL LA A BN L RALAL LS AN S £ A A S an e P,

guaranice for a problem. Finally, in Section 6.3, we discuss some practical
considerations concerning the applicability of this type of result, and we
mention some tecent theoretical work direcied toward analyzing the ‘“‘aver-
age performance” of heuristic algorithms.

6.1 Performance Guarantees for Approximation Algorithms

Let us begin by presenting a formal description of what we will mean
by an *‘optimization problem.”

A combinaiorial optimization problem I1 is either a minimization problem
or a maximization problem and consists of the following three parts:

(1) aset Dy of insiances

(2) for each instance [€ Dy, a finite set Sy(I) of candidate solutions
for I; and

(3) a function my that assigns to each instance [€ Dy and each candi-
date solution o € Sq(I) a positive rational number my(l,07),
called the solution value for o.

If II is a minimization [maximization] problem, then an optimal solution for
an instance I € Dy is a candidate solution o* € S§y(/) such that, for all
o €SI, mall,o®) < mp,0) ImpU,0*) = mu(I,0)]. We will use
OPTr(J) to denote the value mu{Z,o*) of an optimal solution for [(usual-
ly dropping the subscript II when the problem is clear from context).

An algorithm A is an approximation algorithm for I1 if, given any in-
stance § € Dy, it finds a candidate solution o € Sg{(/). The value mp(/,0)
of the candidate solution o found by 4 when applied to J will be denoted
by A(J). If A{J)=0PT(J) for all 7 € Dy, then 4 is called an oprimization
algorithm for I1. ,

These definitions can be illustraied by considering our old friend the
traveling salesman problern. [t is a minimization problem, and the set of
instances consists of all finite sets of cities together with their intercity dis-
tances, The candidate solutions for a particular instance are all the permuta-
tions of the given cities. The solution value for such a permutation is the
length of the corresponding tour. Thus an approximation algorithm for this
problem need only find some permutation of the given set of cities, whereas
an optimization algorithm must always find a permutation that corresponds
10 a minimum length tour.

If, ag in this case, the optimization problem is NP-hard, then we know
that a polynomial time optirnization algorithm cannot be found unless
P_:NP A more reasonable goal is that of finding an approximation algo-
fthim A4 that rung in low-order polynomial time and that has the property
that, for all instances 7, 4 () is “‘close’” to OPT{J). The following exam-
ple illustrates the type of results we will be interested in.

LLee CUASE RN YVE R LR LML CSASIVAL KUl K by & ANNTERLI LIV

‘Consider the “‘bin packing” problem; Given a finite set
U= {u,uy, ..., u,) of “items” and a rational “‘size” s(u) € [0,1] for each
item » € U, find a partition of ¥/ into disjoint subsets Uy, 5, . . ., U, such
that the sum of the sizes of the items in each U, is no more than 1 and
such that k is as small as possible. We can view each subset U, as specify-
ing a set of items to be placed in a single unit-capacity “‘bin,”” with our ob-
jective being to pack the items from U in as few such bins as possibie.

This problem is NP-hard in the strong sense (it contains 3-PARTITION
as a special case), so there is little hope of finding even a pseudo-
polynomial time optimization algorithm for it. However, there are a
number of simple approximation algorithms for it that are worth consider-
ing.

One of these is known as the “‘First Fit’’ algorithm. Imagine that we
start with an infinite sequence B1,£,, . . . of unit-capacity bins, all of which
are empty. The algorithm then places the items into the bins, one at a
time, in order of increasing index. It does so according to the following
simple rule: always place the next item u; into the lowest-indexed bin for
which the sum of the sizes of the items already in that bin does not exceed
1—s(u;). In other words, u; is always placed into the first bin in which it
will fit (without exceeding the bin capacity). Figure 6.1 shows an example,
where each item is represented by a rectangle having height proportional to
its size.

Figure 6.1 An example of a First Fit placement, where ug is placed in bin B, since
that is the lowest indexed bin in which it fits.

Intuitively this seems to be a very natural and reasonable algorithm. It
never starts a new bin until all the nonempty bins are too full. What can be
proved about its performance?

A first observation relates the number of bins used by First Fit to a na-
tural function of the problem parameters. Let us use “FF’ as an abbrevia-
tion for First Fit. Then we have that, so long as FF(7/)>1,

0.1 PERFUKMAMNCE UL

This is because ther
packing whose conte:
higher indexed such
could not have beer
essentially the best ¢
form U= l{uy,u,y, ..
items will fit in the
item sizes is (n/2) +
choosing >0 suitabl
This observation
can be relative to an

We thus conclude th:

However, First Fit a
following theorem fi
1974]:

Theorem 6.1 For all

Furthermore, there ¢

Thus Theorem ¢
of the First Fit a
significantly more th
bad. (A slight impr
placing (17/10)OPT
Graham, Johnson, ¢
of Theorem 6.1, we
given by the theore
Figure 6.2, for wh'
bound in the theore

{PLETE PROBLEMS

a f[nite st
Y € 10,11 for each
7y, ..., U such
more than 1 and
iset I/, as specify-
in,”” with our ob-
as possible.
ns 3-PARTITIOM
even a pseudo-
ver, there are a
e worth consider-

Imagine that we
bins, all of which
1e bins, one at a
¢ to the following
st-indexed bin for
n does not exceed
rst bin in which it
hows an example,
tht proportional to

laced in bin B, since

jable algorithm. It
y full, What can be

sy First Fit to a na-
‘B> as an abbrevia-
1,

This is because there can be at most one nonempiy bin in the First Fit
packing whose contents total 2 or less. (If not, the first item to go in the
higher indexed such bin would have fit in the lower indexed such bin and
could not have been placed elsewhere by First Fit.) That this bound is
essentially the best possible is apparent when we consider instances of the
form U= {upuy, ..., u,) where s(u)='h+e 1<i<n. Here no two
iterns will fit in the same bin, so FF({) =n, even though the sum of the
item sizes is (n/2) + ne, which can be made as close to n/2 as desired by
choosing >0 suitably small.

This observation also gives us a bound on how bad a First Fit packing
can be relative to an optimal packing, since we clearly have

. -
OPT() = | o s(u)]

i=1

We thus conclude that, for all instances 7,

FR(J) < 2:0PT{)

However, First Fit actually obeys a beiter bound of this form, given by the

following theorem from [Johnson, Demers, Ullman, Garey, and Graham,
19741

Theorem 6.1 For all instances { of the bin packing problem,
17
10

Furthermore, there exist instances / with OPT({) arbitrarily large such that

FF(I) < OPT(1) +2

FRE(I) > % (OPT(/)—-1)

Thus Theorem 6.1 characterizes the asymptotic worst-case performarnce
of the First Fit algorithm. First Fit never differs from optimal by
significantly more than 70 percent and it can on occasion be essentially this
bad. (A slight improvement on the constant term in the upper bound, re-
placing (17/10)0OPT(I)+2 by [(17/10)0OPT(/)], is obtained in [Garey,
Graham, Johnson, and Yao, 19761). Although we omit the lengthy proof
of Theorem 6.1, we note that worst-case behavior almost as bad as that
given by the theorem can be seen from the class of examples described in
Figure 6.2, for which FF(/) = (5/3)OPT(J). (The proof of the lower
bound in the theorem is a complicated extension of these examples.)

L LY g LUMLING WA NP=UUIVEFLE L2 FRUDL RIS

Vg+e 1<i<6bm
Instance /1 U={uj,uy, ..., ujg,t, su)=14{1/3+¢ 6m<i<i2m
Uste 12m<i<18m

17+ Yg+e
1/3 +e ’
’ 1/3+€
1/94¢ o ljg+e
2 1/3 +e
1/7-I—e
6m bins m bins 3m bins 6m bins
OPT{I) =6m FF)=10m

Figure 6.2 Instances [with OPT(/} arbitrarily large such that FF(/) equals
(5/3)0PT(I).

These results for First Fit provide a starting point for analyzing approxi-
mation algorithms for bin packing. One can now go on to analyze other al-
gorithms that might have better guarantees. An obvious modification to the
First Fit algorithm, for example, is that obtained by using the following
more sophisticated placement rule: Always place the next item u; in that bin
which has current contents closest to, but not exceeding, 1—s(u;) (choos-
ing the one with lowest index in case of ties). This is known as the “‘Best
Fit” algorithm. Unfortunately, and perhaps surprisingly, Best Fit has essen-
tially the same worst case performance as First Fit [Johnson et al., 1974].

A better approximation algorithrn is obtained by observing that ths
worst performance for First Fit (and Best Fit) seems to occur when the
smaller items appear before the larger items in the ordering used by the al-
gorithm. Suppose that, instead of merely taking the items from U in the
given order, we first sort them by size and reindex them so that
s(up) =s(uy) > - - 2s(u,). The algorithm that applies First Fit to such a
reordered list is called the “‘First Fit Decreasing’” algorithm (FFD). Its per-
formance is characterized by the following theorem, due to Johnson {1973]
(the proof is skeiched in [Johnson et al., 19741):

o
i1

Theorem 6.2 For all instances I of the bin packing problem,

11

!‘I'J

FD(I) =) 4

by

OPT(

\o’

Furthermore, there exist instances 7 with OFT(/) arbitrarily large such that

[V A AW IS LT VRV RS R

Thus First Fit De
percent worse than op
cal result holds for the
6.3 illustrates a class ¢
both cases.

Instance I: U=

1/4—2e¢ T
lg+e 1

1.

1/2+€ “I

L] |
6m bins 3
OPT(D) =9

Figure 6.3 Instances [
(11/9)0PTU

The proof of the
analysis, whose recapi
allotted to this entire
the rule for problems
for other problems ha
indeed even for bin 1
willing to settle for we

Further modificai
(IJohnson, 1973], [Y:
approximation algoritl
guarantee, but no sub
them.

In surnmary, our
ing problem might be
ward but apparently s
by proving bounds on

examples to verify th

MPLETE PROBLEMS

1<i<6m
bm<i<12m
12m<i<18m

6m bins

. that FF(J) equals

¢ analyzing approxi-
to analyze other ai-
modification to the
psing the following
t item »; in that bin
g, 1—s(y;) (choos-
known as the “‘Best
, Best Fit has essen-
son et al., 19741,
observing that the
to occur when the
ring used by the al-
ems from U in the
dex them so that
s First Fit to such a
thm (FFD). lis per-
e to Johnson {1973}

olem,

rarilv large such that

0.1 PERFORMANMCE GUARANTEES FOR APPROXIMATION ALGORITHMS

}-A
[
-3

S Uoogs
FED(7) = 1 OPT{)

Thus First Fit Decreasing is guaranteed never to be more than about 22
percent worse than optimal, and it can on occasion be this bad. An identi-
cal result holds for the analogous ““Best Fit Decreasing’’ algorithm. Figure
6.3 illustrates a class of examples thai suffice to prove the lower bound in
both cases.

s+e 1<i<ém
Va+ie 6m<i<iom
Instance I: U={uy,uy, ..., usg,), s(u)= 1/4;;.% 12m</‘\<18m
g—2¢ 18m<i<30m
1/4—2¢ 1/4—2¢ - 1/4—2;
1/4+e 1/g—2e L/g+2e 1/g+e 1/4—2e
1/4+2¢ ' Vg+e 1/4—2e
lg+e 4 l/g+e 4 f42¢
1/g+2e lj+e 1/g=2e
. 6m bins 3m bins | ém bins 2m bins 3m bins
OPT() =9m FFD (D) =11m

Figure 5.3 Instances / with OPT(/) arbitrarily large such that FFD(/) equals
(11/9)CPT(1).

The proof of the upper bound involves an extremely detailed case
analysis, whose recapitulation here would require more pages than we have
allotted to this entire chapter. (Although such lengthy proofs appear to be
the rule for problems similar to bin packing, we note that results like these
for other problems have been obtained without such Herculean effort, and
indeed even for bin packing much shorter proofs are obtainable if we are
willing to settle for weaker bounds.)

Further modifications of First Fit Decreasing have been suggested
([Johnson, 19731, [Yao, 1978al) in hopes of obtaining a polynomial time
approximation algorithm for bin packing with an even better performance
guarantee, but no substantially better bound has yet been proved for any of
them.

In summary, our analysis of approximation algorithms for the bin pack-
ing problem might be described as follows: We started with a straightfor-
ward but apparently sensible algorithm and analyzed its performance, both
by proving bounds on what could happen in the worst case and by devising
examples to verify that these bounds could not be improved. With this

128 COPING WITH NP-COMPLETE PROBLEMS

apalysis in mind, and especially the insight it provided as 1o the drawbacks
of our initial algorithm, we could then seek alternative algorithims (perhaps
just more complicated versions of the original one) and analyze them. We
also settled on a general form for our guaraniees, in terms of ratios, which
was useful for comparison purposes and which seems to €Xpress nearness to
optimality in a reasonable way. This general approach can serve as a model
for our study of other NP-hard optimization problems and indeed has been

widely applied (although, of course, ofl occasion other types of guarantees
may be more appropriate Of easier to prove, for example, see [Cornuejols,

Fisher, and Nemhauser, 19771, [MNemhauser, Wolsey, and Fisher, 19781).

To formalize this approach, let us make a few more definitions. T is

a minimization [maximization] problem, and / is any instance in Dy, We

define the ratio R, (/) by
_AD _ 0PTW)
Ra) = o911 &RA(” A ‘

The absolute performance ratio R4 for an approximation algorithm 4 for tL is

given by
R, =inf {r=z1: Ry (1)< r for all instances 1€Du}

mance ratio Rj for A is given by

The asymplotic perfor
{ for some N € Z+r R I) < for all \

Rj =inf rzL f e py satisfying OPTU) 2N

Motice that we have defined these ratios in such a way that the ratio for
a minimization problern is the -reciprocal of that for a maximization prob-
lem. This has been done so that we will have a uniform scale on which to
consider approximation algorithms for different types of problems, always
having 1 < Ry Looand 1< R < oo, with a ratio that is closer to 1 indi-
cating better performance.

Totice also that Ry need not equal R Although Theorem 6.2 shows
that Rgp = 11/9, it is easy (0 give instances [for which OPT(J) =2 and
FFED(I) =3, so that Rypp = 3/2. The asymptotic ratios seeim to be the
more important 00es for bin packing, although for other problems the abso-
{ute ratios may be more appropriate, of it may be the case that Ry =Rji for
all the approximation algorithms in which we are interested. At any rate, it
will be convenient 10 have both types of catios available, and the differences

hetween them are worth kee
algorithm.

As a second example, let us return once more t
problei, only this time with an added restriction.
set ¢ of cities and a specification of t
also vequire that these distances obey the
every triple a,b0,¢ of cities from C,

ping in mind when analyzing an approximation

o the traveling salesman
An instance [8 still 2
he distances between them, but we
“triangle inequality””, 1.e., for

[V RS A S AT P S R

This condition is met,
actual shortest distanc
tours that visit some ¢
the given distances d!
path from ¢ o ¢;. 1t
hard under this restric
considering will have 7
Consider the foll
“Nearest Meighbor™ a
stance, in [Gavett, 19
ties. The first city in -
tial tour built up so fe
rithm chooses for ¢,
among all such cities,
is as small as possible
such city). The next
{19771, shows that tl
behavior than any of t!

Tﬁeorem 6.3 For all 4
with triangle inequality

N

Furthermore, for arbii
for which

NN

The main impor
Ryw =00, a not very
recursive construction
in Figure 6.4.

The performance
much to be desired.
parently sensible heui
by arbitrarily large mu
Fortunately, othe
much better. In fact,
described in {Rosenkr
n.thm that has this be
ning tree.”” Let us v
terms of a complete g

