Homework 6

Rick Skowyra
CS535

I UVITOL G UALDUD GO G o 8 s e ety

Problem 2

Claim: NP is not included in DTIM E(n*) for any fixed k& > 1.

Proof: This can be shown via a contradiction arising from application of the time hi-
erarchy theorem. Assume that the claim is true, that is, there exists some k such that
NP C DTIME(n¥). By corollary 5.15 of the time hierarchy theorem, DTIME(n¥) C
DTIME(n**+). We know that DTIM E(n**') C NTIME(n**?) via the fact that P C NP.
Therefore, DTIME(n*+1) C NTIME(n**') C NP C DTIME(n*) C DTIME(n**1). A

set cannot be properly contained within itielf,}ﬁe(claim mugt-be false.

Problem 3 A%

Claim: NSPACE(2") ¢ DSPACE(2™)
Proof: By Savitch’s theorem, NSPACE(2") C DSPACE(2?"). Since 22" ¢ 0(2"*) and

both functions are fully space constructible, we can apply the spacehierarehy theorem and
state that NSPACE(2") C DSPACE(2*") ¢ DSPACE(2™).

Problem 4

Claim: L = {e| M, accepts the string 00 } is c.e.

Proof: To show that a language L is c.e., it suffices to construct a TM N which will halt
on on all strings = s.t. £ € L, and not halt ot};e)yiépLet N have a read-only input tape
and three work tapes. Construct N as follows:

1. Read the input e, which is assumed to be a valid encoding of a Turing Machine.
2. Use tape 1 for any operations necessary to construct simulate M,.

3. Simulate M,.(00) on the second work tape, allowing it to use the third work tape as its
own work tape. Note that M, may never halt, so N may never halt.

\ (\() 4. If M, halts in an accepting state, halt and accept.
5. If M, halts in a rejecting state, loop.

Note that the above TM will always halt if M, accepts the string 00, and will never halt
otherwise, therefore L is acceptable. Since a set if iynd’dnly if it is acceptable, L is c.e.

Problem 5

Claim: Any partial c.e. set is actually a c.e. set.

Proof: A set is defined as partial-c.e. if it is the range of a partial-computable function.
To prove the claim, we can show (via Corollary 3.2) that any partial-c.e. set is also the
domain of a partial computable function. For partial-c.e. set S, 3f s.t. range(f) = S and f
is partial-computable. By definition, there also exists a TM M which computes f. Then we
can construct an algorithm which computes the partial-computable function g : N — N s.t.
domain(g) = S. The algorithm works as follows:

1. On input word w: | \ ;
2.x=1
3. While (true)

(a) Start simulating M(x)

(b) Evaluate one step of all currently running computations. If any halt with w on
their output tape, halt and accept with z on the output tape.

(c) Increment x

Note the above algorithm halts only if f (w) is defined. That is, only if w € range(f).
Furthermore, note that if the algorithm halts, then w is by definition in the domain of g,
since g is defined (halts with an output) on g(w). If one of the above statements is not true,
then the algorithm does not halt. S = domain(g) and S = range(f), therefore partisl-c.e.
set S is c.e..

¢

