CS 630 - Fall 2021
Homework 1 - Brief Answers

Due: Friday, September 24 by 5:00pm - submit via Gradescope
Reading : For matrices read pages 75-82 about Strassen's algorithm, and also look through Appendix D.
For polynomials start reading Chapter 30 on the FFT in the textbook, pages 898-915.
Problems: Please limit your answer to the following problems to at most $1 / 2$ a pages each.

1. i. You are given the point-value form of a polynomial consisting of the 3 points $(1,-7),(-2,-7)$, and $(-1,7)$.

Use the interpolation formula of Lagrange (found on page 902, equation 30.5) to find a polynomial A of degree 2 which goes through those 3 points.
Show your work.

Answer: The polynomial $\mathrm{A}(\mathrm{x})=-7 x^{2}-7 \mathrm{x}+7$.

You should show some of the Lagrange interpoltaion formula on the 3 points give. Enough to get at least part of the answer.
ii. Is the polynomial A you found in (i). the unique polynomial of degree 2 which goes through the 3 points? Why or why not?

Answer: Yes, the three given points of A and not on any line and a degree 2 polynomail is uniquely characterized by 3 non-collinear points.
iii. Could you find degree a one polynomial which goes through these same 3 points ? How about a degree four polynomial ? Why or why not?

Answer: A degree 3 or degree 4 polynomial which goes through these same 3 points is $\mathrm{A}(\mathrm{x})(x-t)$ or $\left.\mathrm{A}(\mathrm{x})(x-t)^{2}\right)$.
2. i. Prove that for any positive even $n, \omega_{n}{ }^{n / 2}=\omega_{2}=-1$.
ii. List all the principal $6^{\text {th }}$ roots of unity, and $7^{\text {th }}$ roots of unity.
iii. Show that if p is prime then every $p^{t h}$ root of unity other than 1 is principal.
3. i. Recall the usual algorithm we use to multiply two 4×4 matrices of integers.

Exactly how many regular integer multiplications does this take?
How many integer additions ?
ii. Now do the same problem as in problem i. but this time use Strassens algorithm and divide and conquer to do the 4×4 multiplication. Make sure you use Strassen's algorithm at all places of the divide and conquer tree where you do the multiplications.

Answer the same two questions as in part i.
Answer: i. If we do the 4 by 4 matrix multiplication we use $4^{3}=64$ multiplications and $4^{2} 3=$ 48 additions.
ii. Strassen, on the other hand, takes 7 multiplications and $18+$'s to multiply two 2×2 matrices. So to multiply two 4×4 matrices we use $7 \times 7=49$ mults and $40+126+32=198+$'s.
The work to justify all these numbers is not shown here. However, as a hint, the number of additions for Strassen's algorithm is $198=40+126+32$ where $40=10 \times 4,126=7 \times 16$ and $32=8 \times 4$.

