Reading : For matrices read pages 75-82 about Strassen's algorithm, and also look through Appendix D.
For polynomials start reading Chapter 30 on the FFT in the textbook, pages 898-915.
Problems: Please limit your answer to the following problems to at most $1 / 2$ a pages each.

1. i. You are given the point-value form of a polynomial consisting of the 3 points $(1,-7),(-2,-7)$, and ($-1,7$).

Use the interpolation formula of Lagrange (found on page 902, equation 30.5) to find a polynomial A of degree 2 which goes through those 3 points.
Show your work.
ii. Is the polynomial A you found in (i). the unique polynomial of degree 2 which goes through the 3 points ? Why or why not?
iii. Could you find degree a one polynomial which goes through these same 3 points ? How about a degree four polynomial ? Why or why not?
2. i. Prove that for any positive even $\mathrm{n}, \omega_{n}{ }^{n / 2}=\omega_{2}=-1$.
ii. List all the principal $6^{\text {th }}$ roots of unity, and $7^{\text {th }}$ roots of unity.
iii. Show that if p is prime then every $p^{t h}$ root of unity other than 1 is principal.
3. i. Recall the usual algorithm we use to multiply two 4×4 matrices of integers.

Exactly how many regular integer multiplications does this take?
How many integer additions?
ii. Now do the same problem as in problem i. but this time use Strassens algorithm and divide and conquer to do the 4×4 multiplication. Make sure you use Strassen's algorithm at all places of the divide and conquer tree where you do the multiplications.

Answer the same two questions as in part i.

