
CS520 Programming Assignment 1
Posted: 12 Sept 2006
Due: 26 Sept 2006

Overview The purposes of this assignment are:

1. Learn how to program in Ocaml.

2. Implement an evaluator for a small un-typed lambda calculus.

Definitions In this assignment, we are dealing with an un-typed lambda calculus called λ0

whose abstract syntax is defined in Ocaml as follows:

type term0 = TmVar0 of string (* variables *)

| TmLam0 of string * term0 (* abstraction *)

| TmApp0 of term0 * term0 (* application *)

A parser is provided to parse the concrete syntax of λ0 to the abstract syntax tree (as
defined above). For example, the identity term can be written as

lam (x) => x

(which is λx.x in the notation of the book) while the abstract syntax tree is

TmLam0 ("x", TmVar0 "x")

As another example, the term

lam (x) => lam (y) => y x

has the following abstract syntax tree:

TmLam0 ("x", TmLam0 ("y", TmApp0 (TmVar0 "y", TmVar0 "x")))

Problem 1 (40pts): Implement a function called subst in Ocaml which performs substi-
tution for λ0. Note that the subst function should apply to arbitrary λ0 terms, therefore,
α-renaming must be implemented correctly. The subst function should be assigned the
following type in Ocaml:

subst : term0 → string → term0 → term0

Given two terms t0, t1 and a string s, subst(t0)(s)(t1) denotes [s 7→ t1]t0, namely, substituting
each free occurrence of the variable named s in t0 by t1.

Problem 2 (20pts): Implement a function called isClosed in Ocaml which determines
whether a λ0 term is closed or not. Given some term t, isClosed(t) returns true if t is



closed, otherwise, returns false. The isClosed function should be assigned the following type
in Ocaml:

isClosed : term0 → bool

Problem 3 (30pts): Implement a function called eval in Ocaml which evaluates closed λ0

terms through the call-by-value strategy. The eval function should have type

eval : term0 → term0

in Ocaml.

Implementation notes A few files (in prog1.tar.gz) are provided to start the assignment.
You need to provide the actual implementations of the above functions based on the given
code. Once all the code are ready, type make under the directory. If no error reported, an
executable file called evaluator will be produced. You can test your code by typing

./evaluator filename

where filename should be replaced by some actual file path.

Grading The grading of the assignment is based on whether the required functionalities
are correctly implemented. Please make sure your code can be compiled and tested on csa2
because all submissions will be tested on csa2. There are 10pts for

1. if the code is well organized.

2. if errors are properly handled.

3. if the code has necessary comments.


