
CS520 Programming Assignment 3
Posted: 17 Oct 2006
Due: 11:59pm, 9 Nov 2006

Overview The purposes of this assignment are:

1. Extend the language λt (in programming assignment 2) with effects, namely, exceptions

and references to a language called λ
eff
t .

2. Implement a type-checker for λ
eff
t .

3. Implement an evaluator for λ
eff
t .

Syntax of λ
eff
t (extended from λt)

types ty ::= unit | int | bool | string | ty1 → ty2 | ty1 ∗ . . . ∗ tyn

| ref ty | exn
contants c ::= () | true | false | 0 | 1 | . . .
operators op ::= + | − | ∗ | / | ∼ | print | . . .
terms t ::= c | x | if t0 then t1 else t2 | op(t1, . . . , tn) | lam (x : ty) => t

| t1(t2) | let x = t1 in t2 | letrec x : ty = t1 in t2
| (t0, . . . , tn) | t.i | fix(t) | (t : ty)
| ref t | t1 := t2 | !t | raise t
| try t0 with cls

patterns pat ::= c | x
clauses cls ::= (pat1 ⇒ t1 | . . . | patn ⇒ tn)

where a pattern can be either a constant or a variable.
Note that unit corresponds to Unit, the type constructor ref corresponds to Ref and ()

corresponds to unit (value), respectively, in Pierce’s book.

Operators We assume the following operators in λ
eff
t with corresponding types:

+ : int ∗ int→ int

− : int ∗ int→ int

∗ : int ∗ int→ int

/ : int ∗ int→ int

∼ : int→ int (* negation *)
> : int ∗ int→ bool

>= : int ∗ int→ bool

< : int ∗ int→ bool

<= : int ∗ int→ bool

= : int ∗ int→ bool

<> : int ∗ int→ bool

print : string→ unit

Abstract Syntax Definition of λ
eff
t in Ocaml

type stp =

TpBase of string (* base type *)

| TpFun of stp * stp (* function type *)

| TpTup of stp list (* tuple type *)

| TpExn (* exception type *)

| TpRef of stp (* reference type *)

type ttm =

TtmBool of bool (* boolean constant *)

| TtmInt of int (* integer constant *)

| TtmStr of string (* string constant *)

| TtmVar of string (* variable *)

| TtmIf of ttm * ttm * ttm (* if-then-else term *)

| TtmOp of string * ttm list (* built-in operator *)

| TtmLam of string * stp * ttm (* lambda abstraction *)

| TtmApp of ttm * ttm (* application *)

| TtmLet of string * ttm * ttm (* let-binding *)

| TtmLetrec of string * stp * ttm * ttm (* letrec-binding *)

| TtmTup of ttm list (* tuple *)

| TtmPro of ttm * int (* projection *)

| TtmFix of ttm (* fixed point *)

| TtmAsc of ttm * stp (* ascription *)

| TtmRef of ttm (* reference *)

| TtmLoc of int (* location *)

| TtmAssign of ttm * ttm (* assignment *)

| TtmDeref of ttm (* de-reference *)

| TtmRaise of ttm (* raise *)

| TtmTry of ttm * (ttm * ttm) list (* try ... with ... *)

Static Semantics of λ
eff
t (rules similar as λt’s are omitted)

Γ ` t1 : T1

Γ ` ref t1 : ref T1
(ty-ref)

Γ ` t1 : ref T1

Γ ` !t1 : T1
(ty-deref)

Γ ` t1 : ref T1 Γ ` t2 : T1

Γ ` t1 := t2 : unit
(ty-assign)

t1 ∈ {constants, variables}
Γ ` t1 : exn

(ty-exn)

Γ ` t1 : exn
Γ ` raise t1 : T

(ty-raise)

Γ ` t0 : T Γ ` pat1 : exn Γ ` t1 : T . . . Γ ` patn : exn Γ ` tn : T

Γ ` try t0 with pat1 ⇒ t1 | . . . | patn ⇒ tn : T
(ty-try)

Note that all exceptions here are constants or variables, i.e. they do not carry values.
Remark: we do not need to maintain a store typing Σ in the rules as in Chapter 13 of
Pierce’s book because there are no locations in the source programs. Such a Σ is only
needed if we are to type intermediary programs that mention locations.

Dynamic Semantics of λ
eff
t

We use l for locations and µ for location store and µ[l 7→ v] to mean updating the store
µ at location l by v.

t1 | µ → t′
1 | µ′

ref t1 | µ → ref t′
1 | µ′ (eval-ref1)

l /∈ dom(µ)

ref v1 | µ → l | µ[l 7→ v1]
(eval-refV)

t1 | µ → t′
1 | µ′

!t1 | µ → !t′
1 | µ′ (eval-deref1)

µ(l) = v

!l | µ → v | µ
(eval-derefL)

t1 | µ → t′
1 | µ′

t1 := t2 | µ → t′
1 := t2 | µ′ (eval-assign1)

t2 | µ → t′
2 | µ′

v1 := t2 | µ → v1 := t′
2 | µ′ (eval-assign2)

l := v | µ → () | µ[l 7→ v]
(eval-assignL)

(raise v)t2 | µ → raise v | µ
(eval-raise1)

v1(raise v) | µ → raise v | µ
(eval-raise2)

Rules for raise v occuring in other contexts (let, op, etc.) are similar.

t0 | µ → t′
0 | µ′

try t0 with clauses | µ → try t′
0 with clauses | µ′ (eval-try1)

try v0 with cls | µ → v0 | µ
(eval-tryV)

pati 6= patk for k = 1, . . . , i− 1.

try pati with (pat1 ⇒ t1 | . . . | patn ⇒ tn) | µ → ti | µ
(eval-tryExn)

Problem 1 (40pts): Based on the given static semantics, implement a function called

typecheck in Ocaml which performs type checking for a λ
eff
t term. The typecheck function

should be assigned the following type in Ocaml:

typecheck : ttm→ stp option

Note that for a well-typed term t of type T , typecheck(t) should return Some(T); Otherwise,
return None.

Problem 2 (50pts): Based on the given dynamic semantics, implement a function called

eval in Ocaml which evaluates closed well-typed λ
eff
t terms through the call-by-value strategy

(you can adapt the small-step semantics to big-step semantics for efficiency). The eval

function should have type

eval : ttm→ ttm

in Ocaml. Note that locations are represented as natural numbers and you need to implement
the location store (and operations on it) by yourself.

Implementation notes A few files (in prog3.tar.gz) are provided to start the assignment.
You need to provide the actual implementations of the above functions based on the given
code. Once all the code are ready, type make under the directory. If no error reported, an
executable file called evaluator will be produced. You can test your code by typing

./evaluator filename

where filename should be replaced by some actual file path. There are some test cases
provided in the test directory.

Grading The grading of the assignment is based on whether the required functionalities
are correctly implemented. Please make sure your code can be compiled and tested on csa2
because all submissions will be tested on csa2. There are 10pts for

1. if the code is well organized.

2. if errors are properly handled.

3. if the code has necessary comments.

4. etc.

