
CS520 Programming Assignment 4
Posted: 10 Nov 2006
Due: 11:59pm, 1 Dec 2006

Overview The purposes of this assignment is to implement the type inference for λt (defined
in programming assignment 2), including constraint generation, unification, etc.

Syntax of λt

The only difference from the definition in assignment 2 is that type annotations are
optional (because we are able to infer them if not provided). For instance, for lambda
abstraction, both lam (x : ty) => t and lam (x) => t are legal. Similarly for letrec.

Constraint Typing Rules of λt

Here, only rules that are not presented in [Handout 18, 19, 20] are provided.

Σ(op) = (T1, . . . , Tn) → T Γ ` t1 : T ′

1
| C1 . . .Γ ` tn : T ′

n
| Cn

Γ ` op(t1, . . . , tn) : T | C1 ∪ . . . ∪ Cn ∪ {T ′

1
=̇ T1} ∪ . . . ∪ {T ′

n
=̇ Tn}

(CT-op)

Γ ` t0 : T0 | C0 Γ ` t1 : T1 | C1 Γ ` t2 : T2 | C2

Γ ` if t0 then t1 else t2 : T1 | C0 ∪ C1 ∪ C2 ∪ {T0 =̇ bool} ∪ {T1 =̇ T2}
(CT-if)

Γ ` let x = fix(λx.t1) in t2 : T | C

Γ ` letrec x = t1 in t2 : T | C
(CT-letrec)

Γ ` t : T1 | C1 X is fresh

Γ ` fix(t) : X | C1 ∪ {X → X =̇ T1}
(CT-fix)

Γ ` t1 : T1 | C1 . . . Γ ` tn : Tn | Cn

Γ ` (t1, . . . , tn) : T1 ∗ . . . ∗ Tn | C1 ∪ . . . ∪ Cn

(CT-tup)

Γ ` t : T1 ∗ . . . ∗ Tn | C

Γ ` t.i : Ti | C
(CT-proj)

Γ ` t : T1 | C1

Γ ` (t : T) : T | C1 ∪ {T1 =̇ T}
(CT-asc)

Note that the rule (CT-proj) requires that the term being projected has to have a tuple
type in the form of T1 ∗ . . . ∗ Tn and i must be in {1, . . . , n}. This in turn requires binding
occurrences of variables of tuple types have to be explicitly type-annotated.

Dynamic Semantics of λt

The dynamic semantics is identical to that defined in assignment 2.

Abstract Syntax Definition of λt in Ocaml

type varrep = {name: int; link: stp option ref}

and stp =

TpBase of string

| TpFun of stp * stp

| TpTup of stp list

| TpVar of varrep (* type variable *)

| TpUni of int (* universal type variable *)

(* Abstract Syntax Tree (AST) definitions *)

type ttm =

TtmBool of bool

| TtmInt of int

| TtmStr of string

| TtmVar of string

| TtmIf of ttm * ttm * ttm

| TtmOp of string * (ttm list)

| TtmLam of string * stp option * ttm

| TtmApp of ttm * ttm

| TtmLet of string * ttm * ttm

| TtmLetrec of string * stp option * ttm * ttm

| TtmTup of ttm list

| TtmPro of ttm * int

| TtmFix of ttm

| TtmAsc of ttm * stp

We extend stp with type variables and universal type variables (for implementing type
scheme). Note that each type variable is essentially a record with two fields: the first one is an
integer which serves as a unique identifier for the variable; the second one is a reference so that
instances of the same type variable refer to one same location. With this implementation,
you don’t need to implement substitution in the unification. Once the content of a location
is changed, every instance of the same type variable is able to see the chance. The universal
type variables are represented as integers and are merely used as place holders.

Problem 1 (80pts+20pts): Based on the given constraint typing rules, implement a
function called typecheck in Ocaml which infers the type of a given λt term. The typecheck
function should be assigned the following type in Ocaml:

typecheck : ttm → stp option

Note that for a well-typed term t of type T , typecheck(t) should return Some(T); Otherwise,
return None.

Specifically, you need to generates all the constraints then perform the unification to
solve the constraints (you need to adapt the algorithm in the book to handle tuple types).
There are three phases in this problem and you can get partial credits by implementing some
of them:

1. (70pts) Implement the type inference without supporting let-polymorphism.

2. (10pts + 20pts) Extend your implementation in 1 so that it handles let-polymorphism.
There are two ways you can implement it: one based on term substitution is simpler
(use the rule (CT-LetPoly) in Handout 19); the other based on generalizing free type
variables is considered harder and for which there are suggestions at the end of Chapter
22 in Pierce’s book. You can implement either of them. However, implementing the
second alternative correctly will get you 20 extra points. Please state clearly which
one you use in your submission.

3. (0pts) Based on the given dynamic semantics, implement a function called eval in
Ocaml which evaluates closed well-typed λt terms through the call-by-value strategy
(you can adapt the small-step semantics to big-step semantics for efficiency). The
eval function should have type

eval : ttm → ttm

in Ocaml. Note that this one is almost identical to the one you implemented in assign-
ment 2 so no extra points is worth.

Implementation notes A few files (in prog4.tar.gz) are provided to start the assignment.
You need to provide the actual implementations of the above functions based on the given
code. Once all the code are ready, type make under the directory. If no error reported, an
executable file called evaluator will be produced. You can test your code by typing

./evaluator filename

where filename should be replaced by some actual file path. There are some test cases
provided in the test directory.

Grading The grading of the assignment is based on whether the required functionalities
are correctly implemented. Please make sure your code can be compiled and tested on csa2
because all submissions will be tested on csa2. There are 10pts for

1. if the code is well organized.

2. if errors are properly handled.

3. if the code has necessary comments.

4. etc.

