
CS520 Problem Set 7 Solution

29th November 2006

Problem 1 (Lemma 0.2 in HD 14) Every closed, non-value terms t can be uniquely decomposed into
Ecbv such that t = Ecbv[v1 v2] or t = Ecbv [v1 + v2].

Proof. Induction on cases of t that are closed and are not values. The cases are t = t1 t2 and t = t1 + t2.
Notice that subterms t1 and t2 may be values. The base cases are when both subterms are values, which
cannot be decomposed by themselves with Ecbv 6= [].

• case t = t1 t2,

– subcase, both t1, t2 are values v1, v2, then let Ecbv = [] and t can be decomposed as t = Ecbv [v1 v2].

– subcase, t1 is a value v1 but t2 is not a value. We know t is closed, so t2 has to be closed. By I.H.
on t2, we get a decomposition t2 = Ecbv2[t

′

2]. Then let Ecbv = v1 Ecbv2, and t can be decomposed
as t = Ecbv[t

′

2].

– subcase, t1 is not a value. We know t is closed, so t1has to be closed. By I.H. on t1, we get a
decomposition t1 = Ecbv1[t

′

1]. Then let Ecbv = Ecbv1 t2, and t can be decomposed as t = Ecbv [t′1].

• case t = t1 + t2, ditto.

Notice that in every subcases of t, only one form of evaluation context can apply, so decomposition of all
subcases are unique.

The idea of this proof is to show there is exactly one redex for every evaluable (closed, non-value) term.
This lemma is necessary so Definition 0.3 defines a deterministic one-step evaluation. The decomposition
t = Ecbv[t

′] puts redex in t′.

Problem 2 (Exercise 0.3 in HD 15) Given a t ∈ L and consider a context C for t such that t = C[nf]
for some nf (either a x or v).

1. If t is closed, show that nf is a value (cannot be x).

2. If t is not closed, show that nf is not necessarily a value (may be x).

Proof. In general, if nf is not closed, then C[nf] is not closed. Prove the more general statement using
induction on the structure of C.

Problem 3 Is exception handling in HD 16 more general than Pierce §14.3, or the other way around?

1

System Simplified HD 16 (L+) Pierce §14.3 (Lp)

Definition

t ::= v

t t

raise t t

handle t t t

t ::= . . .

raise t

try t with t

Redex
raise ex v

handle ex v t

raise v

try t with v

Figure 0.1: Comparing simplified HD 16 (L+) and Pierce §14.3 (Lp).

• To encode Lp in L+: simply fix ex to a constant name throughout a term, so all exceptions have the
same name, and they can carry arbitrary values.

• To encode L+ in Lp: at first glance, Lp looks more restrictive because it doesn’t distinguish exception
names. However, item 4 in p. 177 explains how extensible variant type can be used. Each case of
the variant type Texn (1) has a label that can encode exception name, and (2) carries a value. If
try t with v captures an unintended exception, make v raise it again.

Therefore, both systems have the same expressiveness in exception handling.

2

