(CS5H20 Problem Set 7 Solution

29th November 2006

Problem 1 (Lemma 0.2 in HD 14) Every closed, non-value terms ¢ can be uniquely decomposed into
Ecpy such that t = Epylvr v2] or t = Eepy[vr + v2).

Proof. Induction on cases of ¢ that are closed and are not values. The cases are t = t1 to and t = t1 + to.
Notice that subterms ¢; and t2 may be values. The base cases are when both subterms are values, which
cannot be decomposed by themselves with F.p, # [].

e caset =1 to,

— subcase, both ¢y, t2 are values vy, va, then let Eq,, = [] and ¢ can be decomposed as t = Fepy [v1 v2].

— subcase, t; is a value v; but t5 is not a value. We know ¢ is closed, so t2 has to be closed. By I.H.
on ta, we get a decomposition ta = Eepyo[ts]. Then let Egpy = v1 Fepyz2, and ¢ can be decomposed
as t = Eepy[th].

— subcase, t; is not a value. We know ¢ is closed, so t1has to be closed. By I.H. on t;, we get a
decomposition t1 = Egpy1[t]]. Then let Ecpy = Ecpp1 ta, and ¢ can be decomposed as t = Eopy [t]].

e case t = t1 + to, ditto.

Notice that in every subcases of t, only one form of evaluation context can apply, so decomposition of all
subcases are unique.

O

The idea of this proof is to show there is exactly one redex for every evaluable (closed, non-value) term.
This lemma is necessary so Definition 0.3 defines a deterministic one-step evaluation. The decomposition
t = Epy[t’] puts redex in t'.

Problem 2 (Exercise 0.3 in HD 15) Given a ¢t € £ and consider a context C for ¢t such that t = C[nf]
for some nf (either a x or v).

1. If ¢ is closed, show that nf is a value (cannot be z).

2. If ¢ is not closed, show that nf is not necessarily a value (may be z).

Proof. In general, if nf is not closed, then C[nf] is not closed. Prove the more general statement using
induction on the structure of C'. O

Problem 3 Is exception handling in HD 16 more general than Pierce §14.3, or the other way around?

| System [Simplified HD 16 (L") | Pierce §14.3 (£P)]

t = w
‘t t = ...
Definition . raise t
raise try ¢t witht
handlet tt
Red raise ex v raise v
edex handleex v ¢ try ¢t withv

Figure 0.1: Comparing simplified HD 16 (£1) and Pierce §14.3 (LP).

e To encode LP in L*: simply fix ex to a constant name throughout a term, so all exceptions have the
same name, and they can carry arbitrary values.

e To encode LT in LP: at first glance, £P looks more restrictive because it doesn’t distinguish exception
names. However, item 4 in p. 177 explains how extensible variant type can be used. Each case of
the variant type Te.n (1) has a label that can encode exception name, and (2) carries a value. If
try ¢t with v captures an unintended exception, make v raise it again.

Therefore, both systems have the same expressiveness in exception handling.

