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Problem 1. Using map as a model, write a polymorphic list-reversing 
function:

reverse : ∀X. List X → List X.

_reverse = λX.
(fix (λrev: (List X) → (List X) → (List X).

λl: List X. λanswer: List X.
if isnil [X] l
then answer
else rev (tail [X] l)

    (cons [X] (head [X] l) answer)))

reverse = λX. λl: List X. _reverse [X] l (nil [X])

The extra parameter “answer” in “_reverse” accumulates the reversed list until the original list “l” is 
empty. A close implementation of this function in OCaml and some test cases are showed below.

(michel) ~/ % ocaml
        Objective Caml version 3.09.1

# let rec _reverse (l: 'a list) (answer: 'a list) =
  if (List.length l) = 0
  then answer
  else _reverse (List.tl l)
                ((List.hd l) :: answer);;
val _reverse : 'a list -> 'a list -> 'a list = <fun>
# let reverse (l: 'a list) = _reverse l [];;
val reverse : 'a list -> 'a list = <fun>
# reverse [];;
- : 'a list = []
# reverse [1];;
- : int list = [1]
# reverse ["a string"];;
- : string list = ["a string"]
# reverse [1; 2; 3; 4; 5];;
- : int list = [5; 4; 3; 2; 1]



Problem 2. Show that the type
PairNat = ∀X. (CNat → CNat → X) → X;

can be used to represent pairs of numbers, by writing functions
pairNat : CNat → CNat → PairNat;
fstNat : PairNat → CNat;
sndNat : PairNat → CNat;

for constructing elements of this type from pairs of numbers and for 
accessing their first and second components.
pairNat = λn1: CNat. λn2: CNat.

λX. λfunc: CNat → CNat → X. func n1 n2
fstNat = λpair: PairNat. pair [CNat] (λn1: CNat. λn2: CNat. n1)
sndNat = λpair: PairNat. pair [CNat] (λn1: CNat. λn2: CNat. n2)

(Comment.) The fact that X can be any type is not explored in this question, in fact, one could change 
X to CNat, remove the type abstraction, and have a simpler code. However, there are cases where 
having a polymorphic return type is interesting. The following example assumes that records are part of 
the language.

PairNat_to_2D_point = λpair: PairNat.
pair [{x=CNat, y=CNat}] (λn1: CNat. λn2: CNat. {x=n1, y=n2})

Problem 3. (1) How many different supertypes does {a: Top, b: Top} have? 
(2) Can you find an infinite descending chain in the subtype relation – that 
is, an infinite sequence of types S0, S1, etc. such that each Si+1 is a subtype 
of Si? (3) What about an infinite ascending chain?
(1) The supertypes of size 2: {a: Top, b: Top} and {b: Top, a: Top}; The supertypes of size 1: {a: Top} 
and {b: Top}; The supertype of size 0: {}; and, finally Top. Total: 6 supertypes.

(2) S0 = {}; S1 = {label1: Top}; S2 = {label1: Top, label2: Top}; ...;
Sn = {label1: Top, label2: Top, ..., labeln: Top}

(3) In order to get an ascending chain, one can not rely on finding a type T0 whose ascending types are 
the previous type with something removed, the opposition to the previous adding process, because 
since types are finite here, it would not produce an infinite sequence. Thus, an infinite sequence must 
rely on adding something to the previous term. This can only happens to the arrow type because it has 
the subtype relation inverted to the left side of the arrow. Therefore the answer to this item is as follow: 
T0 = S0 → Top; T1 = S1 → Top; T2 = S2 → Top; ...; Tn = Sn → Top.

(Comment.) In the previous examples, “Top” behaves just as a placeholder, it can be replaced by any 
valid type since the subtype relation is reflexive (X <: X). The given definition of descending / 
ascending chains does not seem to be what Pierce really meant when he devised this question because 
the following sequence is valid for both item (2) and item (3): S0 = T0 = Top; S1 = T1 = Top; S2 = T2 = 
Top; ...; S3 = T3 = Top. Once again, Top is used just as a placeholder and the previous sequence is valid 
because (again) subtype relation is reflexive.



Problem 4. Prove the decidability of the type-checking problem relative to 
the type-annotated rules (page 4 of handout 22).
Let t be a given term of the language defined on page 2 in handout 22, and Γ a given context. Type 
checking t under the assumptions held in Γ and giving the type of t if it exists are decidable.

Proving by induction on the structure of terms. All the typing rules referenced below can be found on 
page 4 in handout 22.

Case t = x (variable)
if (x : T) ∈ Γ, the type of t is T, according to the rule T-Var. Otherwise, t does not type-check under Γ.

Case t = λx: T. t' (abstraction)
Using the inductive hypothesis, if t' type-checks under the assumptions Γ' = Γ, (x : T), t' has type T', 
otherwise t' does not type-check. If t' does not type-checks, neither does t. If t' type-checks, t has type T 
→ T' according to T-Abs.

Case t = t1 t2 (application)
Using the inductive hypothesis, if t1 type-checks under the assumptions Γ, t1 has type T1, otherwise t1 

does not type-check. For t2, If t2 type-checks under the assumptions Γ, t2 has type T2, otherwise t2 does 
not type-check. If t1 or t2 does not type-checks, neither does t.

If t1 and t2 type-check,T1 = Tleft → Tright, and Tleft = T2, then t has type Tright according to T-App, 
otherwise t does not type-check.

Case t = λX. t' (type abstraction)
Using the inductive hypothesis, if t' type-checks under the assumptions Γ' = Γ, X, t' has type T', 
otherwise t' does not type-check. If t' does not type-checks, neither does t. If t' type-checks, t has type ∀
X.T' according to T-TAbs.

Case t = t' [T] (type application)
Using the inductive hypothesis, if t' type-checks under the assumptions Γ, t' has type T', otherwise t' 
does not type-check. If t' type-checks and T' = ∀X.Τ'', then the type of t is the result of the substitution 
[X → T]T'' according to T-TApp, otherwise t does not type-check.
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