Some Questions and Exercises About Matrices
Adding and Subtracting

Question 1 Let A be an $m \times n$ matrix and B a $p \times q$ matrix. Then the addition $A + B$, and the subtraction $A - B$, are defined iff . . . ?

Question 2 Let A, B and C be matrices of the appropriate dimensions.

1. Is matrix addition *commutative*, *i.e.*, $A + B = B + A$?

2. Is matrix addition *associative*, *i.e.*, $A + (B + C) = (A + B) + C$?

Question 3 Repeat the preceding question for matrix subtraction.
Multiplication

Question 4 Let B be an $m \times p$ matrix and A a $q \times n$ matrix. Then the product BA is defined iff . . . ? What is the dimension of the resulting matrix?

Question 5 Let B be an $m \times p$ matrix, A a $p \times n$ matrix, and \vec{x} a vector with n entries. Is it the case that $B(A\vec{x}) = (BA)\vec{x}$?

Question 6 Let C be a $k \times m$ matrix, B an $m \times p$ matrix, and A a $p \times n$ matrix. Is it the case that $C(BA) = (CB)A$?

Question 7 Let A be a $m \times n$ matrix and D a $p \times q$ matrix. Let B and C be $n \times p$ matrices.

- Is it the case that $A(B + C) = AB + AC$?
- Is it the case that $(B + C)D = BD + CD$?
Multiplication

Question 8 Let B be a $k \times \ell$ matrix and A a $\ell \times k$ matrix.

- What are the dimensions of the product BA?
- What are the dimensions of the product AB?
- Give examples of B and A such that $BA \neq AB$.

Question 9 Let A and B be 2×2 matrices:

\[
A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}
\]

1. Write the 2×2 matrix resulting from multiplying AB.

2. Give nontrivial sufficient conditions in order that $AB = BA$.
Different Kinds of Square Matrices

Definition 10 (Square Matrices) Let A be a $n \times n$ square matrix:

$$A = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{bmatrix}$$

- A is a symmetric matrix iff $a_{ij} = a_{ji}$ for all $1 \leq i, j \leq n$.
- A has a constant diagonal iff $a_{11} = a_{22} = \cdots = a_{nn}$.
- A is a diagonal matrix iff $a_{ij} = 0$ for all $i \neq j$.
- A is an upper triangular matrix iff $a_{ij} = 0$ for all $i > j$.
- A is an lower triangular matrix iff $a_{ij} = 0$ for all $i < j$.
Multiplication

Exercise 11 Consider arbitrary 2×2 symmetric matrices A and B, each with constant diagonal.

1. Show that $AB = BA$.

2. Show that $A + B$ is a symmetric matrix with a constant diagonal.

3. Show that $A - B$ is a symmetric matrix with a constant diagonal.

4. Show that AB is a symmetric matrix with a constant diagonal.

Exercise 12 Show that only parts 1, 2, and 3 in Exercise 11 hold in general for 3×3 symmetric matrices with constant diagonals. State a sufficient condition so that part 4 also holds.

Exercise 13 Repeat Exercise 11 for $n \times n$ upper triangular matrices, for an arbitrary $n \geq 2$.
Theorem 14 Let B be an $m \times p$ matrix and A a $p \times n$ matrix. Let the columns of A be $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ each with p entries. Then the matrix product BA is:

$$BA = B \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \end{bmatrix} = \begin{bmatrix} B\vec{v}_1 & B\vec{v}_2 & \cdots & B\vec{v}_n \end{bmatrix}$$

That is, to compute BA, we multiply B with the n column vectors of A and combine the resulting n column vectors.
Entries of the Matrix Product

Theorem 15 Let B be an $m \times p$ matrix and A a $p \times n$ matrix. The (i, j)-th entry of the product BA is the dot product of the i-th row of B and the j-th column of A.

Specifically, if $B = (b_{ij})_{1 \leq i \leq m, 1 \leq j \leq p}$ and $A = (a_{k\ell})_{1 \leq k \leq p, 1 \leq \ell \leq n}$, then the i-th row of B and the j-th column of A are:

$$
\begin{bmatrix} b_{i1} & b_{i2} & \cdots & b_{ip} \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{pj} \end{bmatrix}
$$

and their dot product is:

$$
b_{i1}a_{1j} + b_{i2}a_{2j} + \cdots + b_{ip}a_{pj} = \sum_{1 \leq k \leq p} b_{ik}a_{kj}
$$