Equivalent Conditions of
Invertibility and Non-Invertibility
The following are equivalent statements* for $n \times n$ matrix A

1. A is invertible, i.e., A^{-1} exists.

2. A is nonsingular.

3. The linear system $A\vec{x} = \vec{0}$ has exactly one solution $\vec{x} = \vec{0}$.

4. The linear system $A\vec{x} = \vec{b}$ has exactly one solution $\vec{x} = A^{-1}\vec{b}$.

5. $\text{rref}(A) = I_n$, i.e., A has n (nonzero) pivots.

6. $\text{rank}(A) = n$.

7. $\text{im}(A) = \text{Col}(A) = \mathbb{R}^n$.

8. $\text{im}(A^T) = \text{Col}(A^T) = \mathbb{R}^n$.

*Good review for end-of-term exam: Read carefully each statement and give a reason why it is equivalent to invertibility.
9. \(\ker(A) = \text{Nul}(A) = \{ \vec{0} \} \)

10. \(\ker(A^T) = \text{Nul}(A^T) = \{ \vec{0} \} \).

11. The linear transformation represented by \(A \) is one-one (i.e., injective).

12. The linear transformation represented by \(A \) is onto (i.e., surjective).

13. The column vectors of \(A \) form a basis for \(\mathbb{R}^n \).

14. The row vectors of \(A \) form a basis for \(\mathbb{R}^n \).

15. The column vectors of \(A \) span \(\mathbb{R}^n \).

16. The row vectors of \(A \) span \(\mathbb{R}^n \).

17. The column vectors of \(A \) are linearly independent.

18. The row vectors of \(A \) are linearly independent.

19. \(\det A \neq 0 \).

20. All eigenvalues of \(A \) are nonzero (not yet covered in lecture).
The following are equivalent statements* for $n \times n$ matrix A

1. A is not invertible, i.e., A^{-1} is not defined.

2. A is singular.

3. The linear system $Ax = \vec{0}$ has infinitely many solutions.

4. The linear system $Ax = \vec{b}$ has no solution or infinitely many.

5. $\text{rref}(A)$ has at least one zero row.

6. $\text{rank}(A) < n$.

7. $\text{im}(A) = \text{Col}(A) \subset \mathbb{R}^n$.

8. $\text{im}(A^T) = \text{Col}(A^T) \subset \mathbb{R}^n$.

*Good review for end-of-term exam: Read carefully each statement and give a reason why it is equivalent to non-invertibility.
9. \(\ker(A) = \text{Nul}(A) \supseteq \{\mathbf{0}\} \).

10. \(\ker(A^T) = \text{Nul}(A^T) \supseteq \{\mathbf{0}\} \).

11. The linear transformation represented by \(A \) is not one-one (i.e., injective).

12. The linear transformation represented by \(A \) is not onto (i.e., surjective).

13. The column vectors of \(A \) do not form a basis for \(\mathbb{R}^n \).

14. The row vectors of \(A \) do not form a basis for \(\mathbb{R}^n \).

15. The column vectors of \(A \) do not span \(\mathbb{R}^n \).

16. The row vectors of \(A \) do not span \(\mathbb{R}^n \).

17. The column vectors of \(A \) dependent.

18. The row vectors of \(A \) dependent.

19. \(\det A = 0 \).

20. At least one eigenvalue of \(A \) is 0 (not yet covered in lecture).
Other specialized topics from first half of the semester

1. Correspondence between geometric transformations in 2D (and 3D) and 2×2 (and 3×3) matrices.

2. Correspondence between elementary row operations and elementary matrices (including permutation matrices).

3. Cramer’s rule.

5. Matrix factorization and LU decomposition.