Problem 1. \textit{Higher-Order Functions and Lambda Expressions.} Consider the following Haskell definitions of two functions:

\begin{verbatim}
foo :: [a -> b] -> [a] -> [b]
foo [] _ = []
foo _ [] = []
foo (f:fs) (x:xs) = (f x) : (foo fs xs)
\end{verbatim}

\begin{verbatim}
repeat :: a -> [a]
repeat x = x : (repeat x)
\end{verbatim}

For each of the following expressions, decide whether it type-checks or not. If it type-checks, give the final value to which the expression evaluates, if there is also a \texttt{show} function for it. If it does not type-check, give a precise reason.

\textbf{Hint:} Do parts (a), (b), (c), and (d) together (they depend on each other) and then parts (e), (f), and (g) together (they depend on each other).

(a) \((\text{repeat } (\lambda (x :: \text{Int}) \to x \times x))\)

\textit{Answer:}
\begin{verbatim}
(\text{repeat } (\lambda x \to x \times x)) :: [\text{Int} \to \text{Int}] -- type-checks
(\text{repeat } (\lambda x \to x \times x)) => -- no "show" function
-- for type [\text{Int} \to \text{Int}]
\end{verbatim}

(b) \((\text{foo } (\text{repeat } (\lambda (x :: \text{Int}) \to x \times x)))\)

\textit{Answer:}
\begin{verbatim}
(\text{foo } (\text{repeat } (\lambda x \to x \times x))) :: [\text{Int}] \to [\text{Int}] -- type-checks
(\text{foo } (\text{repeat } (\lambda x \to x \times x))) => -- no "show" function
-- for type [\text{Int}] \to [\text{Int}]
\end{verbatim}

(c) \((\text{foo } (\text{repeat } (\lambda (x :: \text{Int}) \to x \times x))) [1..4]\)

\textit{Answer:}
\begin{verbatim}
(\text{foo } (\text{repeat } (\lambda x \to x \times x))) [1..4] :: [\text{Int}] -- type-checks
(\text{foo } (\text{repeat } (\lambda x \to x \times x))) [1..4] => [1,4,9,16]
-- final value is a finite list of 4 elements
\end{verbatim}

(d) \((\text{map } (\text{foo } (\text{repeat } (\lambda (x :: \text{Int}) \to x \times x)))) (\text{repeat } [1..4])\)

\textit{Answer:}
map (foo (repeat (∖ x → x * x))) (repeat [1..4]) :: [[Int]] -- type-checks

map (foo (repeat (∖ x → x * x))) (repeat [1..4]) =>
[[1,4,9,16],[1,4,9,16],[1,4,9,16],... -- final value is an infinite list of 4-element finite lists

(e) foo [\ f -> f 2, \ f -> f 2] [\ (x :: Int) -> x * x, \ (x :: Int) -> x * x * x]
Answer:

\[\begin{align*}
\text{foo [\ f -> f 2, \ f -> f 2]} & \ [\ x -> x*x, \ x -> x*x*x] :: [\text{Int}] \\
& \quad \text{-- type-checks} \\
\text{foo [\ f -> f 2, \ f -> f 2]} & \ [\ x -> x*x, \ x -> x*x*x] \Rightarrow [4,8] \\
& \quad \text{-- final value is finite list of 2 elements}
\end{align*} \]

(f) foo (foo [\ f x -> f x,\ f x -> f x] [\ (x :: Int) -> x*x,\ (x :: Int) -> x*x*x]) [2,2]
Answer:

\[\begin{align*}
\text{foo(} & \text{foo[\ f x -> f x,\ f x -> f x]} [\ x -> x*x,\ x -> x*x*x]) [2,2] :: [\text{Int}] \\
& \quad \text{-- type-checks} \\
\text{foo(} & \text{foo[\ f x -> f x,\ f x -> f x]} [\ x -> x*x,\ x -> x*x*x]) [2,2] \Rightarrow [4,8] \\
& \quad \text{-- final value is finite list of 2 elements}
\end{align*} \]

(g) foo [\ f -> f 2,\ f -> f 2]
(\text{foo [\ f -> f 2,\ f -> f 2]} [\ (x :: Int) -> x * x, \ (x :: Int) -> x * x * x])
Answer:

\[\begin{align*}
\text{foo [\ f -> f 2,\ f -> f 2]} & \ (\text{foo [\ f -> f 2,\ f -> f 2]} [\ x -> x*x, \ x -> x*x*x]) :: \\
& \quad \text{-- does not type-check, because the type of the first} \\
& \quad \text{-- line is of the form [Int -> a] -> a while the type} \\
& \quad \text{-- of the second line is [Int]} \\
\text{foo [\ f -> f 2,\ f -> f 2]} & \ (\text{foo [\ f -> f 2,\ f -> f 2]} [\ x -> x*x, \ x -> x*x*x]) \Rightarrow \\
& \quad \text{-- no value returned}
\end{align*} \]
Problem 2. (*Call-by-Value and Call-by-Name*) Consider the following Mini-Haskell as well as Haskell expression \(M \):

\[
M = (\ x \to (\ y \to x * y)) \ (3 * 5) \ ((\ z \to z) \ 2)
\]

(a) The expression \(M \) is not fully parenthesized. Write the fully-parenthesized version of \(M \), i.e., insert in \(M \) all implicit parentheses:

Answer:

\[
(((\ x \to (\ y \to x * y)) \ (3 * 5)) \ ((\ z \to z) \ 2))
\]

(b) Carry out a *call-by-value* evaluation of \(M \), using the substitution model. You may use the fully-parenthesized version of \(M \) in part (a), if you prefer, but you do not have to:

Answer:

\[
\begin{align*}
(\ x \to (\ y \to x * y)) \ (3 * 5) \ ((\ z \to z) \ 2) &\Rightarrow \\
(\ y \to x * y) \ (3 * 5) \ ((\ z \to z) \ 2) &\Rightarrow \\
(\ y \to 15 * y) \ ((\ z \to z) \ 2) &\Rightarrow \\
(\ y \to 15 * y) \ 2 &\Rightarrow \\
15 * 2 &\Rightarrow \\
30 &
\end{align*}
\]

(c) Carry out a *call-by-name* evaluation of \(M \), using the substitution model. You may use the fully-parenthesized version of \(M \) in part (a), if you prefer, but you do not have to:

Answer:

\[
\begin{align*}
(\ x \to (\ y \to x * y)) \ (3 * 5) \ ((\ z \to z) \ 2) &\Rightarrow \\
(\ y \to (3 * 5) * y) \ ((\ z \to z) \ 2) &\Rightarrow \\
(3 * 5) * ((\ z \to z) \ 2) &\Rightarrow \\
15 * ((\ z \to z) \ 2) &\Rightarrow \\
15 * 2 &\Rightarrow \\
30 &
\end{align*}
\]

Consider another expression \(N \):

\[
N = (\ x \to \ y \to y)
\]

(d) Specify two expressions \(P \) and \(Q \) so that the *call-by-value* and *call-by-name* evaluations of the expression \((N \ P \ Q)\) (using the substitution model) are exactly the same.

Answer:

\[
P = 3 \\
Q = True
\]

(e) Can you specify an expression \(P \) so that the *call-by-name* evaluation of the expression \((N \ P \ 3)\) (using the substitution model) will not terminate? If yes, write such an expression \(P \). If no, explain in at most 2 lines.

Answer:

NO, it is not possible. While we can write an expression \(P \) whose evaluation will not terminate, the non-termination of \(P \) will not affect the final value of \((N \ P \ 3)\), which is always 3, because the binding ‘‘\(\ x \)’’ is dummy.
(f) Can you specify an expression \(P \) so that the call-by-value evaluation of the expression \((N \; P \; 3) \) (using the substitution model) will not terminate? If yes, write such an expression \(P \). If no, explain in at most 2 lines.

\textit{Answer:}
\begin{center}
YES, it is possible. Such an expression is:
\[P = (\text{let } z = 1 : z \; \text{in} \; z) \]
\end{center}

(g) Can you specify two expressions \(P \) and \(Q \) so that the call-by-value (or, if you prefer, call-by-name) evaluation of the expression \((N \; P \; Q) \) (using the substitution model) will always terminate and return a Boolean value:

- True if and only if \(P \) and \(Q \) have the same type.
- False if and only if \(P \) and \(Q \) do not have the same type.

If yes, write such expression \(P \) and \(Q \). If no, explain in at most 2 lines.

\textit{Answer:}
\begin{center}
NO, it is not possible. No matter what the types of \(P \) and \(Q \) are, there is no possible communication between \(P \) and \(Q \), because the binding \(''\backslash \; x''\) is dummy.
\end{center}

\textbf{Problem 3. (Monomorphism versus Polymorphism)} Consider the following Haskell as well as Mini-Haskell expression \(M \):

\[
M = (\text{let } f = (\; \backslash \; x \rightarrow x) \; \text{in} \; (f \; f) \; 5)
\]

Assume the type of the constant 5 is Int.

(a) Ignore all typing issues in this question. Does the evaluation of \(M \) terminate in Haskell? If yes, write the final value which is returned. If no, explain in at most 2 lines.

\textit{Answer:}
\begin{center}
YES, the evaluation of \(M \) always terminates in Haskell, and the final returned value is 5.
\end{center}

(b) Ignore all typing issues in this question. Does the evaluation of \(M \) terminate in Mini-Haskell? If yes, write the final value which is returned. If no, explain in at most 2 lines.

\textit{Answer:}
\begin{center}
YES, the evaluation of \(M \) always terminates in Mini-Haskell, and the final returned value is 5.
\end{center}

(c) Is \(M \) monomorphically typable in Haskell? If yes, write down the final type assigned to \(M \). If no, explain in at most 2 lines.

\textit{Answer:}
\begin{center}
NO, it is not monomorphically typable, because of the self-application \((f \; f)\).
\end{center}
(d) Is M polymorphically typable in Haskell? If yes, write down the final type assigned to M. If no, explain in at most 2 lines.

Answer:

YES, it is polymorphically typable and the final type assigned to M is Int.

(e) Is it possible to transform M into another Haskell expression M' so that M is polymorphically typable iff M' is monomorphically typable? **No credit** without justification.

Answer:

YES, it is possible. For example, we can introduce a let-binding for every occurrence of ‘‘f’’ in the body of the let-expression. For the expression in question, this produces:

```haskell
let f1 = (\ x -> x) in
let f2 = (\ x -> x) in (f1 f2) 5
```

which is monomorphically typable iff M is polymorphically typable.

(f) Consider the following expression N

$$N = (\ f -> (f f) 5) \ (\ x -> x)$$

Is N typable in Haskell, whether polymorphically or monomorphically? **No credit** without justification.

Answer:

NO, it is not, because the type of a lambda-bound variable (here f) must be monomorphic. To type the self-application ($f f$), we need a different type for each of the two occurrences of f -- which requires that the type for the binding occurrence of f, i.e. ‘‘f’’, must be polymorphic, and this is not permitted in Haskell.

(g) Consider the following expression P

$$P = (\ f -> f (f 5)) \ (\ x -> x)$$

Is P typable in Haskell? **No credit** without justification.

Answer:

YES, it is typable, monomorphically. The required type for the lambda-bound ‘‘f’’ is ‘‘Int -> Int’’ and the required type for the lambda-bound ‘‘x’’ is ‘‘Int’’.