Problem 1. **Infinite Lists of Integers.** There are four independent parts.

(a) What is the infinite list defined by the following declaration?

```
infListA :: [Int]
infListA = 1 : (zipWith (+) ones infListA)
  where ones = 1 : ones
```

Answer: 1, 2, 3, 4, 5, ... (the positive integers)

(b) What is the infinite list defined by the following declaration?

```
infListB :: [Int]
infListB = 1 : (zipWith (+) infListB infListB)
```

Answer: 1, 2, 4, 8, 16, ... (the powers of 2)

(c) What is the infinite list defined by the following declaration?

```
inflistC :: [Int]
inflistC = 1 : (zipWith (*) (tail nats) inflistC)
  where nats = 0 : (map succ nats)
```

Answer: 1, 1, 2, 6, 24, 120, 720, ... (the list of factorials)

(d) The function *mysteryFn* below returns an infinite list. What is the infinite list returned by *mysteryFn 2*?

```
mysteryFn :: Int -> [Int]
mysteryFn x = x : (zipWith (+) (mysteryFn x) (mysteryFn x))
```

Answer: 2, 4, 8, 16, ... (the powers of 2 greater than 1)
Problem 2. Datatypes and Binary Trees. Consider the following polymorphic datatype, representing binary trees where every leaf and every internal node is labelled:

```haskell
data Tree a = Leaf a | Node a (Tree a) (Tree a)
```

In parts (a), (b) and (d) below, we ask you to define appropriate Haskell functions: To get full credit, you need to use pattern-matching and wildcards as much as possible.

(a) Define a function that counts the number of internal nodes (excluding leaves) in a tree:

Answer:

```haskell
numberOfNodes :: Tree a -> Int
numberOfNodes (Leaf _) = 0
numberOfNodes (Node _ t1 t2) = 1 + numberOfNodes t1 + numberOfNodes t2
```

(b) Define a function that counts the number of leaves in a tree:

Answer:

```haskell
numberOfLeaves :: Tree a -> Int
numberOfLeaves (Leaf _) = 1
numberOfLeaves (Node _ t1 t2) = numberOfLeaves t1 + numberOfLeaves t2
```

(c) For an arbitrary tree \(t \) of type \(\text{Tree} \ a \), it is a fact that:

\[
1 + \text{numberOfNodes}(t) = \text{numberOfLeaves}(t)
\]

Suppose we want to prove fact (##) by induction. Write the statement that we need to prove in the induction step of this induction – do not write the proof itself. In particular, write carefully what the induction is on – is it on the number of internal nodes? on the number of leaves? on the height of trees? on the structure of trees? etc. – and how the induction hypothesis will be invoked in this induction step:

Answer: The induction is on the number of internal nodes in trees. Let \(n \) be an arbitrary non-negative integer.

Induction hypothesis: Assume, for every tree with at most \(n \) internal nodes, that equation (##) holds, starting with \(n = 0 \).

Induction step: Let \(t \) be an arbitrary tree with \(n + 1 \) internal nodes. We have to prove that equation (##) holds for this \(t \), by invoking the induction hypothesis twice, once for the left subtree of \(t \) and once for the right subtree of \(t \).

(d) Recall the definition of the function \(\text{zip} \) on two lists \(\text{xs} \) and \(\text{ys} \): It pairs off corresponding elements in \(\text{xs} \) and \(\text{ys} \), and returns a list which is as long as the shorter of the two input lists. Generalize the definition of \(\text{zip} \) to work on trees, with the output being another tree that matches as much as possible the shapes of the two input trees:

Answer:
Problem 3. **Types and Type Checking.** The infix operator for composition is just “.” so that, for example, the expression “(even . ceiling) 4.2” is equivalent to “even (ceiling 4.2)”, which evaluates to False. Using composition as a prefix operator, the preceding expression is also equivalent to “(. even ceiling) 4.2”.

(a) Write the type of the prefix operator for composition.

Answer:

\[
(\cdot) :: (a -> b) -> (c -> a) -> c -> b
\]

The library function flip is a higher-order function which takes as input a curried function \(f\) of two arguments \(x\) and \(y\) such that the evaluation of the expression “\(f x y\)” produces the same result as the evaluation of the expression “(flip \(f\)) \(y x\)”. For example, the two expressions below:

\[
\text{map even [1,2,3]} \quad \text{and} \quad (\text{flip map}) [1,2,3] \text{ even}
\]

are equivalent and therefore evaluate to the same final result \([\text{False,True,False}]\).

(b) Write the type of the library function flip.

Answer:

\[
\text{flip} :: (a -> b -> c) -> (b -> a -> c)
\]

In the remaining parts of this problem, take the type of the library function even to be Int -> Bool, and the type of the library function ceiling to be Float -> Int.

(c) Does (\(\cdot\) even ceiling) type-check? If it does, write its type. If it does not, give a reason.

Answer: The expression does type check, and its type is:

\[
(\cdot\text{ even ceiling}) :: \text{Float -> Bool}
\]

(d) Does (\(\cdot\) ceiling even) type-check? If it does, write its type. If it does not, give a reason.

Answer: The expression does not type check, because (\(\cdot\) ceiling :: (a->Float)->(a->Int) cannot be applied to even :: Int->Bool which follows from the fact that (a->Float) cannot be instantiated to (Int->Bool).

(e) Does (flip (\(\cdot\) even ceiling)) type-check? If it does, write its type. If it does not, give a one-line reason.

*Answer: The expression does not type check, because it is equivalent to ((\(\cdot\) ceiling even) in part (d), which does not type check.
(f) Does (flip (.) ceiling even) type-check? If it does, write its type. If it does not, give a one-line reason.

Answer: The expression does type check, because it is equivalent to ((.) even ceiling) in part (c), which does type check. Hence,

\[(\text{flip (.) ceiling even}) :: \text{Float} \rightarrow \text{Bool}\]
Problem 4. **User-Defined Polymorphic Lists.** Instead of the native (i.e., pre-defined) datatype of polymorphic lists, we want to use the following user-defined datatype:

```haskell
data List a = Nil | Cons a (List a)
```

To get full credit, you need to use **pattern-matching** and **wildcards** as much as possible throughout. In parts (a), (b) and (c), you must use **recursion** explicitly; in parts (d), (e) and (f), you must use **foldList** explicitly.

(a) Define the function `toList` that translates native lists to user-defined lists, e.g., the list “[3, 2, 7]” (shorthand for “(3:(2:(7:[]))))” is translated to “(Cons 3 (Cons 2 (Cons 7 Nil))).”

Answer:

```haskell
toList :: [a] -> List a
toList (x:xs) = Cons x (toList xs)
toList [] = Nil
```

(b) Define the function `fromList` that translates user-defined lists to native lists, e.g., the user-defined list “(Cons ‘a’ (Cons ‘d’ (Cons ‘c’ Nil)))” is translated to “(‘a’:(‘d’:(‘c’:[]))).”

Answer:

```haskell
fromList :: List a -> [a]
fromList (Cons x xs) = x : (fromList xs)
fromList Nil = []
```

(c) Define the function `foldList` which acts on user-defined lists just as `foldr` acts on native lists.

Answer:

```haskell
foldList :: (a -> b -> b) -> b -> List a -> b
foldList f init Nil = init
foldList f init (Cons x xs) = f x (foldList f init xs)
```

(d) Define the function `mapList` on user-defined lists, the counterpart of `map` on native lists. You must use `foldList` to get credit.

Answer:

```haskell
mapList :: (a -> b) -> (List a) -> (List b)
mapList f = foldList (Cons . f) Nil
```

(e) Define the function `sumList` which adds up the entries in an argument of type `List Int`. You must use `foldList` to get credit.

Answer:

```haskell
sumList :: (List Int) -> Int
sumList = foldList (+) 0
```

(f) Define the function `toZeroOneList` which takes a list of type `List Int` then turns every **even** integer to 0 and every **odd** integer to 1. For example, the list “(Cons 3 (Cons 2 (Cons 7 Nil)))” is transformed to “(Cons 1 (Cons 0 (Cons 1 Nil))).” You must use the function `foldList` to get credit.

Answer:
toZeroOneList :: (List Int) -> (List Int)
toZeroOneList = foldList help Nil
 where
 help m
 | (even m) = Cons 0
 | (odd m) = Cons 1