
CS 6110 S16 Lecture 2 The λ-Calculus 29 January 2016

Last time we introduced the λ-calculus, a mathematical system for studying the interaction of functional
abstraction and functional application.

We discussed the syntax and some conventions regarding parsing and gave several examples. Now we arrive
at the question: How does one evaluate a λ-calculus term? This is analogous to running a program in a
functional language.

The traditional evaluation mechanism of the λ-calculus is based on the notion of substitution. The main
computational rule is called β-reduction. This rule applies whenever there is a subterm of the form (λx. e1) e2
representing the application of a function λx. e1 to an argument e2. The β-reduction rule substitutes e2 for
the variable x in the body of e1, then recursively evaluates the resulting expression.

We must be very careful about the formal definitions, however, because trouble can arise if we just substitute
terms for variables blindly.

1 Scope, Bound and Free Occurrences, Closed Terms

The scope of the abstraction operator λx shown in the term λx. e is its body e. An occurrence of a variable
y in a term is said to be bound in that term if it occurs in the scope of an abstraction operator λy (with the
same variable y); otherwise, it is free. A bound occurrence of y is bound to the abstraction operator λy with
the smallest scope in which it occurs.

λx. (x (λy. y a)x) (λx. x y)

Figure 1: Scope and bindings

Note that a variable can have both bound and free occurrences in the
same term, and can have bound occurrences that are bound to different
abstraction operators.

For example, in the term shown in Fig. 1, all three occurrences of x are
bound. The first two are bound to the first λx, and the last is bound to
the second λx. The first occurrence of y is bound, the a is free, and the
last y is free, since it is not in the scope of any λy.

This scoping discipline is called lexical or static scoping. It is called so because the variable’s scope is defined
by the text of the program, and it is possible to determine its scope before the program runs by inspecting
the program text.

1.1 Free Variables

Formally, the set of free variables of a term, denoted FV(e), is defined inductively as follows:

FV(x)
△
= {x} FV(e0 e1)

△
= FV(e0) ∪ FV(e1) FV(λx. e)

△
= FV(e)− {x}.

This definition is inductive on the structure of e. The basis is the leftmost equation, and the other two
are the inductive cases. In each of the two inductive cases, the right-hand side defines the value of FV(e)
in terms of proper subterms of e, which are smaller. Since all terms have finite size, this means that the
definition eventually reaches the base case of variables. This is an example of structural induction. We will
see many more definitions by structural induction in this course.

A term is closed if it contains no free variables; thus all occurrences of any variable x occur in the scope of
a binding operator λx. A term is open if it is not closed.

1

2 Substitution and β-Reduction

2.1 Variable Capture

Intuitively, to perform β-reduction on the term (λx. e1) e2, we substitute the argument e2 for all free occur-
rences of the formal parameter x in the body e1, then evaluate the resulting expression (which may involve
further such steps).

However, we cannot just substitute e2 blindly for x in e1 because of the problem of variable capture. This
would occur if e2 contained a free occurrence of a variable y, and there were a free occurrence of x in the
scope of a λy in e1. In that case, the free occurrence of y in e2 would be “captured” by that λy and would
end up bound to it after the substitution, which would incorrectly alter the semantics.

For example, consider the substitution of x for y in λx. xy. Raw substitution would yield λx. xx. The
variable x has been captured by the binding operator λx.

To prevent this, we can rename the bound variable x to z to obtain λz. zy before doing the substitution.
This transformation does not change the semantics. Now substituting x for y yields λz. zx; the variable has
not been captured.

2.2 Safe Substitution

This idea leads to the following formal definition of safe substitution. The definition is by structural induction.
We write e1{e2/x} to denote the result of substituting e2 for all free occurrences of x in e1 according to the
following rules.1

x{e/x} △
= e

y{e/x} △
= y where y ̸= x

(e1 e2){e/x}
△
= (e1{e/x}) (e2{e/x})

(λx. e0){e/x}
△
= λx. e0

(λy. e0){e/x}
△
= λy. (e0 {e/x}) where y ̸= x and y ̸∈ FV(e)

(λy. e0){e/x}
△
= λz. (e0 {z/y}{e/x}) where y ̸= x, z ̸= x, z ̸∈ FV(e0), and z ̸∈ FV(e).

Note that the rules are applied inductively. That is, the result of a substitution in a compound term is
defined in terms of substitutions on its subterms.

The last of the six rules applies when y ∈ FV(e). In this case, we rename the bound variable y to z to avoid
capture of the free occurrence of y. One might well ask: but what if y occurs free in the scope of a λz in
e0? Wouldn’t the z then be captured? The answer is that it will be taken care of in the same way, but
inductively on a smaller term.

Despite the importance of substitution, it was not until the mid-1950’s that a completely satisfactory def-
inition of substitution was given by Haskell Curry. Previous mathematicians, from Newton to Hilbert to
Church, worked with incomplete or incorrect definitions. It is the last of the rules above that is the hardest
to get right, because it is easy to forget one of the three restrictions on the choice of z or to falsely convince
oneself that they are not needed.

Rewriting (λx. e1) e2 to e1 {e2/x} is the basic computational step of the λ-calculus and is called β-reduction.
In the pure λ-calculus, we can start with a λ-term and perform β-reductions on subterms in any order.

1There is no standard notation for substitution. Pierce [14] writes [x 7→ e2]e1. Other notations for the same idea are
encountered frequently, including e1[x 7→ e2], e1[x← e2], e1[x/e2], e1[e2/x], and e1[x := e2]. Because we will be using brackets
for other purposes, we will use the notation e1 {e2/x}.

2

2.3 Safe Substitution in Mathematics

The problem of variable capture arises in many other mathematical contexts. It can arise anywhere there is
a notion of variable binding and substitution.

For example, in the integral calculus, the integral operator is a binder. In the following naive attempt to
evaluate a definite integral, a variable is incorrectly captured:

intx0(1 + int10x dx) dy = (y + int10yx dx)
∣∣y=x

y=0
= (x+ int10x

2 dx)− 0 = x+ 1
3x

3
∣∣x=1

x=0
= x+ 1

3

This is incorrect. The substitution of x for y under the integral in the second step is erroneous, because x
is the variable of integration and is bound by the integral operator, whereas y is free. To fix this, we need
only change the variable of integration to z.

intx0(1 + int10z dz) dy = (y + int10yz dz)
∣∣y=x

y=0
= (x+ int10xz dz)− 0 = x+ 1

2xz
2
∣∣z=1

z=0
= 3

2x

The λ-calculus formalizes this informal notion and provides a solution in the form of safe substitution.

3 Rewrite Rules

3.1 β-reduction

The β-reduction rule is the main rule by which evaluation takes place in the λ-calculus:

(λx. e1) e2
1−→ e1{e2/x}.

An instance of the left-hand side is called a redex and the corresponding instance of the right-hand side is
called the contractum. In the pure λ-calculus, a β-reduction may be performed at any time to any subterm
that is a redex of the β-rule. The rule is applied by replacing the redex by its corresponding contractum.
For example,

λx. (λy. y)x︸ ︷︷ ︸
β redex

1−→ λx. x

Here the subterm (λy. y)x, which is a redex of the β-rule, is replaced by its contractum x, which is y{x/y}.

3.2 α-conversion

In λx. xz, the name of the bound variable x does not really matter. This term is semantically the same as
λy. yz. A renaming like this is known as an α-conversion or α-reduction. In an α-conversion, the new bound
variable must be chosen so as to avoid capture. If a term α-reduces to another term, then the two terms are
said to be α-equivalent. This defines an equivalence relation on the set of terms, denoted e1 =α e2.

Recall the definition of free variables FV(e) of a term e. In general we have

λx. e =α λy. e{y/x} if y /∈ FV(e).

The proviso y /∈ FV(e) is to avoid the capture of any free occurrences of y in e as a result of the renaming.
The y substituted for x cannot be captured by a binding operator λy already in e because safe substitution
e{y/x} would not let that happen—it would rename the bound variable accordingly.

3.3 Stoy Diagrams and de Bruijn Indices

3

λ .(λ .(λ .))

Figure 2: A Stoy diagram

There are some other ways to represent bindings without variables. One
way is with Stoy diagrams (after Joseph E. Stoy). We can create a Stoy
diagram for a closed term in the following manner. Instead of writing a
term with variable names, we replace each occurrence of a variable with
a dot, then connect that dot to the binding operator that binds that
variable. For example, λx. (λy. (λx. xy)x)x becomes the Stoy diagram
shown in Fig. 2. Two terms are α-equivalent iff they have the same Stoy diagram, so there is no need for
α-conversion.

A related approach is to represent variables using de Bruijn indices (after Nicolaas Govert de Bruijn). Here
we replace each occurrence of a variable with a natural number indicating the binding operator that binds
it. The variable is replaced by the number n if the binding operator that binds it has the n-th smallest scope
(counting from 0) among all scopes containing that occurrence of the variable. The example above becomes
λ. (λ. (λ. 0 1) 1) 0. As with Stoy diagrams, two terms are α-equivalent iff their de Bruijn terms are identical.

3.4 η-reduction

Consider the two terms e and λx. ex, where x ̸∈ FV(e). If these two terms are both applied to an argument
e′, then they will both reduce to e e′. Formally,

(λx. e1x) e2
1−→ e1 e2 if x /∈ FV(e1).

This says that e and λx. ex behave the same way as functions and should be considered equal. Another way
of stating this is that e and λx. ex behave the same way in all contexts of the form [·] e′.

This gives rise to a reduction rule called η-reduction:

λx. ex
η−→ e provided x /∈ FV(e).

The reverse operation, called η-expansion, is practical as well.

In practice, η-expansion is used to delay divergence by trapping expressions inside λ-terms. Such terms are
sometimes called thunks.

3.5 Values and Ω

In the classical λ-calculus, a value is just a term containing no β-redexes. Such a term is said to be in normal
form; no further β-reductions can be applied. Starting from some λ-term, we might perform β-reductions as
long as possible, seeking to produce a value. We write e ⇓ v when a sequence of β-reductions starting with
e produces the value v. Does this always happen eventually? Let us define an expression we will call Ω:

Ω
△
= (λx. xx) (λx. xx)

What happens when we try to evaluate it?

Ω = (λx. xx) (λx. xx)
1−→ (xx){(λx. xx)/x} = Ω

We have just coded an infinite loop! Thus the term Ω has no value.

4 Confluence

A λ-term in general may have many redexes. A reduction strategy is a rule for determining which redex to
reduce next. We can think of a reduction strategy as a mechanism for resolving the nondeterminism. In

4

the classical λ-calculus, no reduction strategy is specified; any redex may be chosen to be reduced next, so
the process is nondeterministic. One sequence of reductions may terminate, but another may not. It is even
conceivable that different terminating reduction sequences result in different values. Luckily, it turns out
that the latter cannot happen.

e3

e2e1

e

Figure 3: Confluence

It turns out that the λ-calculus is confluent (also known as the Church–Rosser
property) under α- and β-reductions. Confluence says that if e reduces by some
sequence of reductions to e1, and if e also reduces by some other sequence of
reductions to e2, then there exists an e3 such that both e1 and e2 reduce to e3,
as illustrated in Fig. 3.

It follows that normal forms are unique up to α-equivalence. If e ⇓ v1 and
e ⇓ v2, where v1 and v2 are in normal form, then by confluence they must be α-
equivalent. Moreover, regardless of the order of previous reductions, it is always
possible to get to the unique normal form if it exists.

However, note that it is still possible for a reduction sequence not to terminate,
even if the term has a normal form. For example, (λxy. y)Ω has a nonterminating reduction sequence

(λxy. y)Ω
1−→ (λxy. y)Ω

1−→ · · ·

by applying β-reductions to Ω, but also has a terminating reduction sequence, namely

(λx. λy. y)Ω
1−→ λy. y

by applying a β-reduction to the whole term. It may be difficult to determine the most efficient way to
expedite termination. But even if we get stuck in a loop, the confluence property guarantees that it is always
possible to get unstuck, provided the normal form exists.

References

[1] H. P. Barendregt. The Lambda Calculus, Its Syntax and Semantics. North-Holland, 2nd edition, 1984.

[2] Henk P. Barendregt and Jan Willem Klop. Applications of infinitary lambda calculus. Inf. and Comput.,
207(5):559–582, 2009.

[3] James Gosling, Bill Joy, Jr. Guy L. Steele, and Gilad Bracha. The Java Language Specification. Prentice
Hall, 3rd edition, 2005.

[4] John E. Hopcroft and Richard M. Karp. A linear algorithm for testing equivalence of finite automata.
Technical Report 71-114, University of California, 1971.

[5] Jean-Baptiste Jeannin. Capsules and closures. Electron. Notes Theor. Comput. Sci., 276:191–213,
September 2011.

[6] Jean-Baptiste Jeannin and Dexter Kozen. Capsules and separation. In Nachum Dershowitz, editor, Proc.
27th ACM/IEEE Symp. Logic in Computer Science (LICS’12), pages 425–430, Dubrovnik, Croatia, June
2012. IEEE.

[7] Jean-Baptiste Jeannin and Dexter Kozen. Computing with capsules. In Martin Kutrib, Nelma Moreira,
and Rogério Reis, editors, Proc. Conf. Descriptional Complexity of Formal Systems (DCFS 2012),
volume 7386 of Lecture Notes in Computer Science, pages 1–19, Braga, Portugal, July 2012. Springer.

[8] J. W. Klop and R. C. de Vrijer. Infinitary normalization. In S. Artemov, H. Barringer, A. S. d’Avila
Garcez, L. C. Lamb, and J. Woods, editors, We Will Show Them: Essays in Honour of Dov Gabbay,
volume 2, pages 169–192. College Publications, 2005.

5

[9] Peter J. Landin. The mechanical evaluation of expressions. Computer Journal, 6(4):308–320, 1964.

[10] Saunders MacLane. Categories for the Working Mathematician. Springer-Verlag, New York, 1971.

[11] John McCarthy. History of LISP. In Richard L. Wexelblat, editor, History of programming languages
I, pages 173–185. ACM, 1981.

[12] Robin Milner and Mads Tofte. Co-induction in relational semantics. Theoretical Computer Science,
87(1):209–220, 1991.

[13] Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1), 1991.

[14] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[15] Robert Pollack. Polishing up the Tait–Martin-Löf proof of the Church–Rosser theorem. In Proc. De
Wintermöte ’95. Department of Computing Science, Chalmers University, Göteborg, Sweden, January
1995.

[16] Masako Takahashi. Parallel reductions in λ-calculus (revised version). Information and Computation,
118(1):120–127, April 1995.

[17] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM, 22(2):215–225,
1975.

[18] Philip Wadler. Monads for functional programming. In M. Broy, editor, Marktoberdorf Summer School
on Program Design Calculi, volume 118 of NATO ASI Series F: Computer and systems sciences. Springer
Verlag, August 1992.

[19] Glynn Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.

6

