
Computer Science 320 (Fall 2016)

Concepts of Programming Languages

Problem Set 7:

Call-by-name Interpreter

Out: Thursday, November 17, 2016
Due: Monday, December 5, 2016, by 11:59 pm

In this assignment, you will implement a call-by-name interpreter for a small subset of Haskell.
You will continue to modify the Haskell skeleton code from Assignment #6. You may use
the solutions for Assignment #6, either those posted or your own, as a starting point. You
will make changes to the Exp and Eval modules.

Note that you are still not allowed to modify any of the existing data type definitions unless
a problem states otherwise or explicitly directs you to change a definition.

Note: Problem 4 is a bonus problem, a solution for which is worth up to 25 points of extra
credit.

Problem 1. (30 pts)

(a) In the Exp module, implement a recursive function noLets::Exp -> Exp which takes an
expression as an argument, and converts all let subexpressions found in that expression
into applications of lambda abstractions.

(b) In the Exp module, implement a function subst::String -> Exp -> Exp -> Exp

which takes a variable name x, an expression N for which that variable must be sub-
stituted, and finally, an expression M on which to perform the substitution.

The function can perform the substitution naively (that is, you may assume that there
are no variable name collisions), but it must not substitute any bound variables, even if
they have the same name. Think carefully about the checks which need to be performed
when subst encounters a lambda abstraction.

If throughout the assignment you never call subst on an expression which may have a
let binding as a subexpression, you do not need to include a case for let bindings in
your definition of subst.

1



Problem 2. (45 pts)

(a) In the Eval module, implement a function appValExp::Val -> Exp -> Error Val

which evaluates a value applied to an expression. You should not evaluate the sec-
ond arguments of the short-circuited boolean binary operators (i.e. ((&&) False) and
((||) True)), nor the argument passed to a unit lambda (that is, \() -> ...) ab-
straction. Note that for some cases, appValExp will need to call subst, as well as
ev0, which you will implement in part (b). For convenience, you may call appVals
from the previous assignment, but do this very carefully. You should not evaluate any
subexpression which does not need to be evaluated according to the evaluation rules.

(b) In the Eval module, modify the body of the ev0::Exp -> Error Val function so that it
evaluates all possible expressions according to the call-by-name evaluation substitution
model. If you apply noLets to an expression before calling ev0 (for example, by
modifying the wrapper evalExp::Exp -> Error Val), you can be certain that the
only situation in which you will need to perform a substitution is at an application of
a lambda abstraction, which is a case already handled by appValExp.

Problem 3. (25 pts)

(a) In the Eval module, modify the body of the ev::Exp -> Env Val -> Error Val func-
tion so that it evaluates expressions according to the call-by-name evaluation environ-
ment model. You may use the subst function to replace variables with thunks applied
to unit. In your solution, you may simply reuse the variable being substituted as the
variable bound to the thunk.

(b) Create a file named tests3.mhs, and in it, write a small program on which the call-
by-value interpreter implemented in the last assignment would diverge, but on which
the call-by-name interpreter implemented in this assignment converges.

Problem 4. (∗25 extra credit pts)

You will implement a transformation on expressions which ensures that the implementation
of subst in Problem 1(b) works correctly for all programs.

(a) In the Exp module, implement a recursive function unique::[String] -> Env String

-> Exp -> (Exp, [String]) which takes an expression and gives a unique name to
every variable in that expression, ensuring that no two lambda abstractions are over
variables with identical names. You will need to maintain a list of fresh variable names.
This list must also be returned with the result because an expression may have multiple
branches, and variables cannot repeat even across branches. The environment is used
to associate old variable names with new ones. You may use noLets.

(b) Modify evalExp::Exp -> Error Val so that an expression is evaluated only after
being transformed using unique.


