
Computer Science 320 (Fall, 2016)

Concepts of Programming Languages

Homework Assignment 8:

Type Inference

Out: December 1, 2016
Due: Wednesday, December 14, 2016, by 11:59 pm

In this assignment, you will implement a type inference algorithm for a small subset of
Haskell. You will make changes to the Ty module. The only modules which are different
from previous versions of the interpreter are the Main and Ty modules, so you may swap
in either your own versions of the Eval, Exp, and Env modules, or the versions provided as
solutions for Homework Assignments #6 and #7.

You may not modify any of the existing data type definitions unless a problem states otherwise
or explicitly directs you to change a definition.

Note: Problem 5 is a bonus problem, a solution for which is worth up to 30 points of extra
credit.

Problem 1. (25 pts)

You will implement a type checker for a subset of mini-Haskell. Familiarize yourself with
the abstract syntax for types (see, for example, Section 7.5 in Lapets’ Lecture Notes, or the
posted handouts following the mid-term exam). Note that there are base types, and a
constructor Arrow::Ty -> Ty -> Ty to construct a function type.

(a) Implement a function tyOp::Oper -> Ty which returns the type of an operator. You
may assume that (==) can only be applied to integers, and that only integer lists can
be constructed (which means, for example, that the type of [] is an integer list).

(b) Implement a function ty0::Exp -> Error Ty which can successfully type check all
primitives (unit, empty list, operator, integer, and boolean), if statements, applica-
tions, and unit lambda abstractions (these are all the cases which do not have variables).

Since there are no type variables, you may use derived equality (==) on types. Re-
member that both branches of an if statement must have the same type, and that
an if condition must have a boolean type. For application, you may need to pattern

1



match on the type of the function in order to check that its type matches the type of
its argument.

Your solution should be able to type check tests4.mhs successfully, and should reject
tests1.mhs (provided with previous assignments) for not being well-typed.

Problem 2. (10 pts)

Performing type inference on expressions which may contain variables requires type variables
(in terms of the syntax for types, it is a type part of which is built using the TyVar::String

-> Ty constructor). We cannot simply use derived equality on types when type variables are
present, so we will need to define a unification algorithm which attempts to find a minimal
substitution of type variables which makes two types equal. Informally, two types which
contain variables are equal if we can somehow replace those variables in both expressions
and obtain two equal expressions. For example, given the types Int -> b and a -> Bool,
the minimal substitution which makes them equal is one which replaces all occurrences of a
with Int and all occurrences of b with Bool.

In order to implement this algorithm, we will need to define substitutions, which are simply
functions that substitute occurrences of a type variable with some other type. Thus, the type
Subst is defined inside the Ty module to be

type Subst = Ty -> Ty

You will define a few functions for constructing and manipulating substitutions.

(a) Define a function idsubst::Subst which makes no changes to a type, and a function
o: Subst -> Subst -> Subst which takes two substitutions and applies them in
sequence, one after another.

(b) Define a function subst::String -> Ty -> Subst which takes a string x representing
a type variable name, and a type t which will be used to substitute that variable.
It should then return a substitution which, when given a type t′, will substitute all
occurrences of x in that type with t. Note that it should not substitute any other type
variables which might be found in the type t′.

(c) Notice the type definition type FreshVars = [Ty]. Define a value freshTyVars::FreshVars,
an infinite list of type variables in which no type variable is ever repeated.

Problem 3. (25 pts)

You will implement the unification algorithm for types. We say a substitution s unifies two
types t1 and t2 if s t1 == s t2, where == is derived equality on types.

(a) Define a function unify::Ty -> Ty -> Error Subst which takes two types and finds
the minimal substitution which makes them equal if one exists, and returns an error
otherwise.



Note that given two types with no type variables, as long as they are equivalent in
terms of derivable equality, a trivial substitution which makes no changes to the types
is sufficient to unify them. On the other hand, if two types without type variables are
not equivalent, there exists no substitution which can unify them.

Also, remember that a type variable can be substituted for any type, including another
type variable. Finally, be very careful when unifying two function types (constructed
using Arrow::Ty -> Ty -> Ty. First, try to unify the argument types. If a substitu-
tion is obtained, be sure to apply it to the result types before trying to unify them. For
example, consider the two types a -> a and Int -> Bool, which cannot be unified. If
we try to unify Int and a, we will obtain a substitution which replaces all instances of
a with Int. This should be taken into account when trying to unify Bool and a.

Problem 4. (40 pts)

You will complete the already partially-implemented type inference function ty::Env Ty

-> FreshVars -> Exp -> Error (Ty, Subst, FreshVars). This function maintains an
environment which maps variables in expressions to their types, and binds fresh type variables
to any new variables it encounters in lambda abstractions or let-bindings. Each time the
function processes some node in an expression tree, it may need to unify the types of the
children of that node, and so, it accumulates these substitutions, returning the to the caller.

Note carefully the base cases for primitives, which return the trivial substitution, along with
the types

(a) Add the base cases for expressions (unit, the empty list, integers, boolean values, and
operators) to the definition of the function ty. You may simply return the fresh list of
variables unchanged, and a trivial substitution which makes no changes to the types.

(b) The case for if expressions in the definition of ty is not complete. Notice that the
function

tys::Env Ty -> FreshVars -> [Exp] -> Error ([Ty], Subst, FreshVars)

is used to obtain the types for all three subexpressions simultaneously. Perform the
remaining checks and unifications in order to complete this part of the definition of
the function. Remember that any substitutions you might generate in the process (in-
cluding the one that has already been generated when type checking the three subex-
pressions) need to be considered in every subsequent unification. Also, when returning
the substitution(s) you generated, remember to use o::Subst -> Subst -> Subst to
combine them in the proper order.

(c) The case for unit lambda abstractions in the definition of ty is not complete. Complete
this part of the definition. Remember to return the type of the abstraction (it takes a
value of type unit as an argument).



(d) The case for general lambda abstractions in the definition of ty is not complete. Com-
plete this part of the definition. Because a new variable is encountered, you will need
to obtain a fresh type variable, and bind this expression variable to the fresh type vari-
able in the environment. The subexpression should be type-checked under this new
environment.

Remember that the argument type of the abstraction is the same as the type of the
variable over which the abstraction is defined. You may want to look at the part of
the definition of ty for let bindings for some guidance. The cases for variables and
application have already been completed for you.

Problem 5. (∗30 extra credit pts)

(a) Notice that the mini-Haskell type inference algorithm is able to generate polymorphic
types for individual values. For example, given the expression \ x -> x, the type
should look something like t1 -> t1, where t1 is a fresh variable generated using
freshTyVars. Define the function freevars::Ty -> [String], which returns the list
of free type variables in a type.

(b) In the Ty module, notice the definition of a syntax for polymorphic types, data PolyTy

= ForAll [String] Ty. Use your solution from part (a) to implement the function
canon::Ty -> PolyTy which takes a type t(α1, . . . , αn) and returns a polymorphic type
∀α1 . . . αn.t(α1, . . . , αn) in which every free variable has been universally quantified.

(c) The Main module uses values of type data AnnotVal = AnnotVal Val Ty to display
values annotated with their types. Modify the show function for AnnotVal so that if a
value’s type is polymorphic, it is displayed in its explicitly quantified form.

(d) In Problems #1 and #3, we assumed that (==) can work only on integers. Modify
the function(s) ty0 and/or ty (as well as any others you may need to modify, such as
tyOp) so that (==) will type check if it is applied to two boolean values as well as to
two integers.

(e) Try using a similar approach to make [] and cons polymorphic. (Note: This problem
is fairly open-ended and potentially challenging).


