
CS 320 – 20 October 2016

Topics Mentioned/Discussed So Far

1



1. avoid recomputation, memoization/dynamic programming

2. higher-order functions, functions as first-class objects

3. infinite lists (defined but not evaluated)

4. lazy evaluation (infinite lists evaluated as much as needed)

5. lazy evaluation/call-by-name evaluation
versus eager evaluation/strict evaluation/call-by-value evaluation

6. recursion more powerful than other mechanisms for repetitive execution

7. reasoning about infinite lists –
what list is defined by “nats = 0:(map (1+) nats)”?
what list is defined by “twos = 1:(map (2*) twos)”?
what list is defined by “fibs = 0:1:(zipWith (+) fibs (tail fibs))”?

8. tail recursion versus recursion in general

2



9. tail recursion via continuation-passing style or
accumulating-parameter style,

10. type inference, type checking

11. polymorphic types, monomorphic types

12. scoping, encapsulation, implementation hiding, help functions

13. local definitions versus global definitions

14. imperative programming/programming with side effects

15. (pure) functional programming/programming without side effects,

16. referential transparency/functional programming
versus referential opaqueness/imperative programming

17. pattern matching



18. list comprehension

19. vocabulary/lexing/ parsing/tokens

20. regular expressions/regular grammars and regular languages,
context-free grammars/BNF and context-free languages

21. associativity and commutativity of binary operators

22. rules of precedence of binary operators, implicit parenthesization

23. rules of association of binary operators, implicit parenthesization

24. function application (in program code) is left-associative: “MNP”
means “((MN)P )”

25. arrow constructor “→” (in type expressions) is right-associative:
“t1 → t2 → t3” means “(t1 → (t2 → t3))”

26. curried/consumes arguments sequentially



versus uncurried/consumes arguments simultaneously

27. user-defined types, in Haskell with keywords: type, newtype, data

28. recursively defined datatypes (also called algebraic datatypes),
introduced with keyword data

29. binary trees, different versions (labels at the internal nodes only, labels
at the leaf nodes only, labels at both), polymorphic or monomorphic

30. constructors and selectors on binary trees (and other recursively
defined datatypes)

31. foldr, foldl, foldl’ on lists and their generalizations on recursively
defined datatypes (e.g., trees using keyword data)

32. map, filter, and other list functions and their generalizations on
recursively defined datatypes (e.g., trees using keyword data)

33. type classes and instance of classes

34. most general types (also called principal types)


