Review

Lambda Calculus

e Basic Syntax
e know pure lambda calculus syntax
e function abstraction
e function application
e variable
e know Haskell Syntax
e Free/Bound/Alpha
e identify bound variables from free variables
e \x = xy(xisbound,yisfree)
e identify bound variables’ binding location (lambda binders)
e \x = (\x = x) x (two binders, two bound x's, 1st x bound
to 2nd binder, 2nd x bound to 1st binder, all counting
from left to right)
e perform alpha-renaming (rename bound variables
consistently)
e \x = (\x # x) y (can be renamed, for instance, to \x =& (\y
= y)y, but notto \y & (\x & \x) y)
e Beta-Reduction
e know how to reduce function application (\x.e1) e2
e please reduce (\x. x x) (\x. x x)
e know what are expressions and values
e is\x.xavalue?
e know what can be reduced, what can't

e know the concept of evaluation/interpretation



CBV/CBN
e know CBV/CBN variants of beta-reduction
e know their differences
e know their indications (divergence)
e evaluate (\x.\y. y) ((\x.x x) (\x. x x)) under CBV and CBN,
respectively
Substitution/Capture
e know what is substitution (replace free variables with lambda
expressions)
o try \x.\y.xyz [\x.xy/z] (replace z with \x.xy)
e know what is name collision/capture and how to avoid them
e know that both substitution and environment can be used to

interpret free variables.

Type Checking/Inference

Unification (Substitution)
e know what is unification problem
e know what is the result of unification
e know the invariant of unification (if s = unify e1 e2,thensel =s
e?)
e know how to perform unification on simple user defined
datatypes with structures and variables
Typing Rules
e know the typings for common expressions
e function abstraction
e function application
e base values and operators

e if-then-else



e let-in-end
know how to do type inference using pen & paper
e write the type for function composition operator o, as
general as possible
e can you write the type for omega (\x. x x)? why or why not

know what will cause type error



