
Review

Lambda Calculus

 Basic Syntax
 know pure lambda calculus syntax

 function abstraction
 function application
 variable

 know Haskell Syntax
 Free/Bound/Alpha

 identify bound variables from free variables
 \x x y (x is bound, y is free)

 identify bound variables’ binding location (lambda binders)
 \x (\x x) x (two binders, two bound x's, 1st x bound
to 2nd binder, 2nd x bound to 1st binder, all counting
from left to right)

 perform alpha-renaming (rename bound variables
consistently)

 \x (\x x) y (can be renamed, for instance, to \x (\y
 y) y, but not to \y (\x \x) y)

 Beta-Reduction
 know how to reduce function application (\x.e1) e2

 please reduce (\x. x x) (\x. x x)
 know what are expressions and values

 is \x.x a value?
 know what can be reduced, what can’t
 know the concept of evaluation/interpretation

 CBV/CBN
 know CBV/CBN variants of beta-reduction
 know their differences
 know their indications (divergence)

 evaluate (\x.\y. y) ((\x.x x) (\x. x x)) under CBV and CBN,
respectively

 Substitution/Capture
 know what is substitution (replace free variables with lambda
expressions)

 try \x.\y.xyz [\x.xy/z] (replace z with \x.xy)
 know what is name collision/capture and how to avoid them
 know that both substitution and environment can be used to
interpret free variables.

Type Checking/Inference

 Unification (Substitution)
 know what is unification problem
 know what is the result of unification
 know the invariant of unification (if s = unify e1 e2, then s e1 = s
e2)
 know how to perform unification on simple user defined
datatypes with structures and variables

 Typing Rules
 know the typings for common expressions

 function abstraction
 function application
 base values and operators
 if-then-else

 let-in-end
 know how to do type inference using pen & paper

 write the type for function composition operator o , as
general as possible
 can you write the type for omega (\x. x x)? why or why not

 know what will cause type error

