
CS 320 – 08 December 2016

(extending handout 16 10 20 TopicsSoFar.pdf)

Topics Mentioned/Discussed So Far

1



1. avoid recomputation, memoization/dynamic programming

2. higher-order functions, functions as first-class objects

3. infinite lists (defined but not evaluated)

4. lazy evaluation (infinite lists evaluated as much as needed)

5. lazy evaluation/call-by-name evaluation
versus eager evaluation/strict evaluation/call-by-value evaluation

6. recursion more powerful than other mechanisms for repetitive execution

7. reasoning about infinite lists –
what list is defined by “nats = 0:(map (1+) nats)”?
what list is defined by “twos = 1:(map (2*) twos)”?
what list is defined by “fibs = 0:1:(zipWith (+) fibs (tail fibs))”?

8. tail recursion versus recursion in general

2



9. tail recursion via continuation-passing style or
accumulating-parameter style,

10. type inference, type checking

11. polymorphic types, monomorphic types

12. scoping, encapsulation, implementation hiding, help functions

13. local definitions versus global definitions

14. imperative programming/programming with side effects

15. (pure) functional programming/programming without side effects,

16. referential transparency/functional programming
versus referential opaqueness/imperative programming

17. pattern matching



18. list comprehension

19. vocabulary/lexing/ parsing/tokens

20. regular expressions/regular grammars and regular languages,
context-free grammars/BNF and context-free languages

21. associativity and commutativity of binary operators

22. rules of precedence of binary operators, implicit parenthesization

23. rules of association of binary operators, implicit parenthesization

24. function application (in program code) is left-associative: “MNP”
means “((MN)P )”

25. arrow constructor “→” (in type expressions) is right-associative:
“t1 → t2 → t3” means “(t1 → (t2 → t3))”

26. curried/consumes arguments sequentially



versus uncurried/consumes arguments simultaneously

27. user-defined types, in Haskell with keywords: type, newtype, data

28. recursively defined datatypes (also called algebraic datatypes),
introduced with keyword data

29. binary trees, different versions (labels at the internal nodes only, labels
at the leaf nodes only, labels at both), polymorphic or monomorphic

30. constructors and selectors on binary trees (and other recursively
defined datatypes)

31. foldr, foldl, foldl’ on lists and their generalizations on recursively
defined datatypes (e.g., trees using keyword data)

32. map, filter, and other list functions and their generalizations on
recursively defined datatypes (e.g., trees using keyword data)

33. type classes and instance of classes



34. most general types (also called principal types)

35. substitution and unification (background for implementation of
type-inference, and call-by-value and call-by-name interpreters)

36. formal semantics of programming languages (“denotational
smeantics” versus “operational semantics”, specified by rules of
inference for operational semantics)

37. lambda calculus (its syntax and reduction rules, “safe substitution” to
avoid name capture, normal order reduction = leftmost outermost
reduction, applicative order reduction = leftmost-innermost
reduction) ∗

38. lambda calculus in relation to programming languages
(desugaring/translating high-level programming constructs in Haskell or
Python – at least in the pure functional parts – into equivalent
lambda-calculus constructs)

∗ Disallowing reductions under lambdas in normal order = call-by-name.
Disallowing reductions under lambdas in applicative order = call-by-value.



39. referential transparency and side effects

40. programming paradigms (functional versus imperative versus
declarative versus logic programming)

41. reasoning about programs (all remaining items to the end of this list)

42. loop invariants (for reasoning about loops, iterative parts, or recursive
parts, within the same program)

43. invariants (equivalent to induction hypotheses in proofs by
inductions)

44. proofs by induction (to prove correctness of an iteration or a recursion
within the same program)

45. proofs by induction (to prove equivalence of two separate programs)

46. proofs by induction (to prove equational properties relating two or
more programs)



47. simple induction, strong induction, structural induction

48. termination conditions for proofs by induction (equivalent to escape
clauses required to terminate iterations and recursions – a well-ordering
on the induction parameters)


