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Syntax of the wff’s of Propositional Logic

I Reading: [LCS, Section 1.3]

I The wff’s of propositional logic are obtained by applying the construction
rules below, and only these, finitely many times.

One basis step:

0. every propositional atom (i.e., propositional variable) p is a WFF

Four induction steps:

1. if ϕ is a wff, then so is (¬ϕ)

2. if ϕ and ψ are wff’s, then so is (ϕ ∧ ψ)

3. if ϕ and ψ are wff’s, then so is (ϕ ∨ ψ)

4. if ϕ and ψ are wff’s, then so is (ϕ→ ψ)

Remember this inductive definition: We use it later in syntax-directed proofs.
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Syntax of the wff’s of Propositional Logic

I More succintly, in BNF (Backus Naur Form):

ϕ ::= p | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ)

This is the same as in [LCS, page 33].

I Or, in Extended BNF – some occurrences of ‘ϕ’ are replaced by ‘ψ’:

ϕ ::= p | (¬ϕ) | (ϕ ∧ ψ) | (ϕ ∨ ψ) | (ϕ→ ψ)

I Or, more abstractly by omitting parentheses, in Extended BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ

Parentheses are used only to set an order of precedence among logical
connectives {¬,∧,∨,→}.
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Parse Trees of wff’s

I A fully-parenthesized wff:((
¬((¬P) ∨ (Q ∧ (¬P)))

)
→

(
¬((¬P) → (Q ∨ (¬R)))

))

I Same wff with all parentheses omitted:

¬ ¬P ∨ Q ∧ ¬P

→ ¬ ¬P → Q ∨ ¬R

(an incomprehensible mess!)

I Same wff minimally parenthesized:

¬ (¬P ∨ (Q ∧ ¬P))

→ ¬ (¬P → (Q ∨ ¬R))

No parentheses in the parse tree
→

¬

→

∨

¬

R

Q

¬

P

¬

∨

∧

¬

P

Q

¬

P

Parse trees are very nice,

but more difficult to store.
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