CS 511, Fall 2018, Handout 02
 Syntax of Propositional Logic

Assaf Kfoury

September 04, 2018
(corrected on Sept 08, 2018)

Syntax of the wff's of Propositional Logic

- Reading: [LCS, Section 1.3]

Syntax of the wff's of Propositional Logic

- Reading: [LCS, Section 1.3]
- The wff's of propositional logic are obtained by applying the construction rules below, and only these, finitely many times.

One basis step:
0 . every propositional atom (i.e., propositional variable) p is a WFF Four induction steps:

1. if φ is a wff, then so is $(\neg \varphi)$
2. if φ and ψ are wff's, then so is $(\varphi \wedge \psi)$
3. if φ and ψ are wff's, then so is $(\varphi \vee \psi)$
4. if φ and ψ are wff's, then so is $(\varphi \rightarrow \psi)$

Remember this inductive definition: We use it later in syntax-directed proofs.

Syntax of the wff's of Propositional Logic

- More succintly, in BNF (Backus Naur Form):

$$
\varphi::=p|(\neg \varphi)|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\varphi \rightarrow \varphi)
$$

This is the same as in [LCS, page 33].

Syntax of the wff's of Propositional Logic

- More succintly, in BNF (Backus Naur Form):

$$
\varphi::=p|(\neg \varphi)|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\varphi \rightarrow \varphi)
$$

This is the same as in [LCS, page 33].

- Or, in Extended BNF - some occurrences of ' φ ' are replaced by ' ψ ':

$$
\varphi::=p|(\neg \varphi)|(\varphi \wedge \psi)|(\varphi \vee \psi)|(\varphi \rightarrow \psi)
$$

Syntax of the wff's of Propositional Logic

- More succintly, in BNF (Backus Naur Form):

$$
\varphi::=p|(\neg \varphi)|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\varphi \rightarrow \varphi)
$$

This is the same as in [LCS, page 33].

- Or, in Extended BNF - some occurrences of ' φ ' are replaced by ' ψ ':

$$
\varphi::=p|(\neg \varphi)|(\varphi \wedge \psi)|(\varphi \vee \psi)|(\varphi \rightarrow \psi)
$$

- Or, more abstractly by omitting parentheses, in Extended BNF:

$$
\varphi::=p|\neg \varphi| \varphi \wedge \psi|\varphi \vee \psi| \varphi \rightarrow \psi
$$

Parentheses are used only to set an order of precedence among logical connectives $\{\neg, \wedge, \vee, \rightarrow\}$.

Parse Trees of wff's

- A fully-parenthesized wff:

$$
\begin{aligned}
& ((\neg((\neg P) \vee(Q \wedge(\neg P)))) \\
& \quad \rightarrow(\neg((\neg P) \rightarrow(Q \vee(\neg R)))))
\end{aligned}
$$

Parse Trees of wff's

- A fully-parenthesized wff:

$$
\begin{aligned}
& ((\neg((\neg P) \vee(Q \wedge(\neg P)))) \\
& \quad \rightarrow(\neg((\neg P) \rightarrow(Q \vee(\neg R)))))
\end{aligned}
$$

- Same wff with all parentheses omitted:

$$
\begin{aligned}
& \neg \neg P \vee Q \wedge \neg P \\
& \quad \rightarrow \neg \neg P \rightarrow Q \vee \neg R
\end{aligned}
$$

(an incomprehensible mess!)

Parse Trees of wff's

- A fully-parenthesized wff:

$$
\begin{aligned}
& ((\neg((\neg P) \vee(Q \wedge(\neg P)))) \\
& \quad \rightarrow(\neg((\neg P) \rightarrow(Q \vee(\neg R)))))
\end{aligned}
$$

- Same wff with all parentheses omitted:

$$
\begin{aligned}
& \neg \neg P \vee Q \wedge \neg P \\
& \quad \rightarrow \neg \neg P \rightarrow Q \vee \neg R
\end{aligned}
$$

(an incomprehensible mess!)

- Same wff minimally parenthesized:

$$
\begin{aligned}
& \neg(\neg P \vee(Q \wedge \neg P)) \\
& \quad \rightarrow \neg(\neg P \rightarrow(Q \vee \neg R))
\end{aligned}
$$

Parse Trees of wff's

- A fully-parenthesized wff:

$$
\begin{aligned}
& ((\neg((\neg P) \vee(Q \wedge(\neg P)))) \\
& \quad \rightarrow(\neg((\neg P) \rightarrow(Q \vee(\neg R)))))
\end{aligned}
$$

- Same wff with all parentheses omitted:

$$
\begin{aligned}
& \neg \neg P \vee Q \wedge \neg P \\
& \quad \rightarrow \neg \neg P \rightarrow Q \vee \neg R
\end{aligned}
$$

(an incomprehensible mess!)

- Same wff minimally parenthesized:

$$
\begin{aligned}
& \neg(\neg P \vee(Q \wedge \neg P)) \\
& \quad \rightarrow \neg(\neg P \rightarrow(Q \vee \neg R))
\end{aligned}
$$

No parentheses in the parse tree

Parse trees are very nice,
but more difficult to store.

(THIS PAGE INTENTIONALLY LEFT BLANK)

