
CS 511, Fall 2018, Handout 02

Syntax of Propositional Logic

Assaf Kfoury

September 04, 2018
(corrected on Sept 08, 2018)

Assaf Kfoury, CS 511, Fall 2018, Handout 02 page 1 of 11

Syntax of the wff’s of Propositional Logic

I Reading: [LCS, Section 1.3]

I The wff’s of propositional logic are obtained by applying the construction
rules below, and only these, finitely many times.

One basis step:

0. every propositional atom (i.e., propositional variable) p is a WFF

Four induction steps:

1. if ϕ is a wff, then so is (¬ϕ)

2. if ϕ and ψ are wff’s, then so is (ϕ ∧ ψ)

3. if ϕ and ψ are wff’s, then so is (ϕ ∨ ψ)

4. if ϕ and ψ are wff’s, then so is (ϕ→ ψ)

Remember this inductive definition: We use it later in syntax-directed proofs.

Assaf Kfoury, CS 511, Fall 2018, Handout 02 page 2 of 11

Syntax of the wff’s of Propositional Logic

I Reading: [LCS, Section 1.3]

I The wff’s of propositional logic are obtained by applying the construction
rules below, and only these, finitely many times.

One basis step:

0. every propositional atom (i.e., propositional variable) p is a WFF

Four induction steps:

1. if ϕ is a wff, then so is (¬ϕ)

2. if ϕ and ψ are wff’s, then so is (ϕ ∧ ψ)

3. if ϕ and ψ are wff’s, then so is (ϕ ∨ ψ)

4. if ϕ and ψ are wff’s, then so is (ϕ→ ψ)

Remember this inductive definition: We use it later in syntax-directed proofs.

Assaf Kfoury, CS 511, Fall 2018, Handout 02 page 3 of 11

Syntax of the wff’s of Propositional Logic

I More succintly, in BNF (Backus Naur Form):

ϕ ::= p | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ)

This is the same as in [LCS, page 33].

I Or, in Extended BNF – some occurrences of ‘ϕ’ are replaced by ‘ψ’:

ϕ ::= p | (¬ϕ) | (ϕ ∧ ψ) | (ϕ ∨ ψ) | (ϕ→ ψ)

I Or, more abstractly by omitting parentheses, in Extended BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ

Parentheses are used only to set an order of precedence among logical
connectives {¬,∧,∨,→}.

Assaf Kfoury, CS 511, Fall 2018, Handout 02 page 4 of 11

Syntax of the wff’s of Propositional Logic

I More succintly, in BNF (Backus Naur Form):

ϕ ::= p | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ)

This is the same as in [LCS, page 33].

I Or, in Extended BNF – some occurrences of ‘ϕ’ are replaced by ‘ψ’:

ϕ ::= p | (¬ϕ) | (ϕ ∧ ψ) | (ϕ ∨ ψ) | (ϕ→ ψ)

I Or, more abstractly by omitting parentheses, in Extended BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ

Parentheses are used only to set an order of precedence among logical
connectives {¬,∧,∨,→}.

Assaf Kfoury, CS 511, Fall 2018, Handout 02 page 5 of 11

Syntax of the wff’s of Propositional Logic

I More succintly, in BNF (Backus Naur Form):

ϕ ::= p | (¬ϕ) | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ)

This is the same as in [LCS, page 33].

I Or, in Extended BNF – some occurrences of ‘ϕ’ are replaced by ‘ψ’:

ϕ ::= p | (¬ϕ) | (ϕ ∧ ψ) | (ϕ ∨ ψ) | (ϕ→ ψ)

I Or, more abstractly by omitting parentheses, in Extended BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ

Parentheses are used only to set an order of precedence among logical
connectives {¬,∧,∨,→}.

Assaf Kfoury, CS 511, Fall 2018, Handout 02 page 6 of 11

Parse Trees of wff’s

I A fully-parenthesized wff:((
¬((¬P) ∨ (Q ∧ (¬P)))

)
→

(
¬((¬P) → (Q ∨ (¬R)))

))

I Same wff with all parentheses omitted:

¬ ¬P ∨ Q ∧ ¬P

→ ¬ ¬P → Q ∨ ¬R

(an incomprehensible mess!)

I Same wff minimally parenthesized:

¬ (¬P ∨ (Q ∧ ¬P))

→ ¬ (¬P → (Q ∨ ¬R))

No parentheses in the parse tree
→

¬

→

∨

¬

R

Q

¬

P

¬

∨

∧

¬

P

Q

¬

P

Parse trees are very nice,

but more difficult to store.

Assaf Kfoury, CS 511, Fall 2018, Handout 02 page 7 of 11

Parse Trees of wff’s

I A fully-parenthesized wff:((
¬((¬P) ∨ (Q ∧ (¬P)))

)
→

(
¬((¬P) → (Q ∨ (¬R)))

))
I Same wff with all parentheses omitted:

¬ ¬P ∨ Q ∧ ¬P

→ ¬ ¬P → Q ∨ ¬R

(an incomprehensible mess!)

I Same wff minimally parenthesized:

¬ (¬P ∨ (Q ∧ ¬P))

→ ¬ (¬P → (Q ∨ ¬R))

No parentheses in the parse tree
→

¬

→

∨

¬

R

Q

¬

P

¬

∨

∧

¬

P

Q

¬

P

Parse trees are very nice,

but more difficult to store.

Assaf Kfoury, CS 511, Fall 2018, Handout 02 page 8 of 11

Parse Trees of wff’s

I A fully-parenthesized wff:((
¬((¬P) ∨ (Q ∧ (¬P)))

)
→

(
¬((¬P) → (Q ∨ (¬R)))

))
I Same wff with all parentheses omitted:

¬ ¬P ∨ Q ∧ ¬P

→ ¬ ¬P → Q ∨ ¬R

(an incomprehensible mess!)

I Same wff minimally parenthesized:

¬ (¬P ∨ (Q ∧ ¬P))

→ ¬ (¬P → (Q ∨ ¬R))

No parentheses in the parse tree
→

¬

→

∨

¬

R

Q

¬

P

¬

∨

∧

¬

P

Q

¬

P

Parse trees are very nice,

but more difficult to store.

Assaf Kfoury, CS 511, Fall 2018, Handout 02 page 9 of 11

Parse Trees of wff’s

I A fully-parenthesized wff:((
¬((¬P) ∨ (Q ∧ (¬P)))

)
→

(
¬((¬P) → (Q ∨ (¬R)))

))
I Same wff with all parentheses omitted:

¬ ¬P ∨ Q ∧ ¬P

→ ¬ ¬P → Q ∨ ¬R

(an incomprehensible mess!)

I Same wff minimally parenthesized:

¬ (¬P ∨ (Q ∧ ¬P))

→ ¬ (¬P → (Q ∨ ¬R))

No parentheses in the parse tree
→

¬

→

∨

¬

R

Q

¬

P

¬

∨

∧

¬

P

Q

¬

P

Parse trees are very nice,

but more difficult to store.
Assaf Kfoury, CS 511, Fall 2018, Handout 02 page 10 of 11

(THIS PAGE INTENTIONALLY LEFT BLANK)

Assaf Kfoury, CS 511, Fall 2018, Handout 02 page 11 of 11

