CS 511, Fall 2018, Handout 03 Natural Deduction, and Examples of Natural Deduction, in Propositional Logic

Assaf Kfoury

September 04, 2018

Assaf Kfoury, CS 511, Fall 2018, Handout 03

- IF the train arrives late AND there are NO taxis THEN John is late for the meeting
- ► John is **NOT** late for the meeting
- the train did arrive late
- THEREFORE there were taxis

- IF the train arrives late AND there are NO taxis THEN John is late for the meeting
- John is NOT late for the meeting
- the train did arrive late
- THEREFORE there were taxis

again symbolically:

IF P **AND** (**NOT** Q) **THEN** R

- IF the train arrives late AND there are NO taxis THEN John is late for the meeting
- John is NOT late for the meeting
- the train did arrive late
- THEREFORE there were taxis

again symbolically:

$$\blacktriangleright (P \land \neg Q) \rightarrow R$$

- IF the train arrives late AND there are NO taxis THEN John is late for the meeting
- John is NOT late for the meeting
- the train did arrive late
- THEREFORE there were taxis

again symbolically:

$$\blacktriangleright (P \land \neg Q) \rightarrow R$$

$$\triangleright \neg R$$

► P

THEREFORE Q

- IF the train arrives late AND there are NO taxis THEN John is late for the meeting
- John is NOT late for the meeting
- the train did arrive late
- THEREFORE there were taxis

again symbolically:

$$(P \land \neg Q) \rightarrow R$$

$$\neg R$$

$$\blacktriangleright \vdash Q$$

- IF the train arrives late AND there are NO taxis THEN John is late for the meeting
- John is NOT late for the meeting
- the train did arrive late
- THEREFORE there were taxis

again symbolically:

$$(P \land \neg Q) \rightarrow R$$

$$\neg R$$

$$P$$

 $\blacktriangleright \vdash Q$

more succintly:

 $P \wedge \neg Q \rightarrow R, \ \neg R, \ P \vdash Q$

Formal Proof of the Sequent * * *

a sequent (also called a judgment) is an expression of the form:

 $\varphi_1,\ldots,\varphi_n\vdash\psi$

where:

- 1. $\varphi_1, \ldots, \varphi_n, \psi$ are well-formed formulas (also called wff's)
- 2. the symbol "⊢" is pronounced turnstile
- the wff's φ₁,..., φ_n to the left of "⊢" are called the premises (also called antecedents or hypotheses)
- the wff ψ to the right of "⊢" is called the conclusion (also called succedent)

a sequent is said to be valid (also deducible or derivable) if there is a formal proof for it

a formal proof (also called deduction or derivation) is a sequence of wff's which starts with the premises of the sequent and finishes with the conclusion of the sequent:

φ_1	premise
φ_2	premise
÷	
φ_n	premise
:	
•	
w	conclusion

where every wff in the deduction is obtained from the wff's preceding it using a proof rule

$$\begin{array}{c} \varphi & \psi \\ \hline \varphi \wedge \psi \\ \hline \varphi \wedge \psi \\ \hline \varphi \wedge \psi \\ \hline \varphi \\ \hline \neg \neg \varphi \\ \hline \neg \neg e \\ \hline \end{array}$$

(cannot be used in intuitionistic logic)

open a box when you *introduce* an assumption (wff φ in rule \rightarrow i) close the box when you *discharge* the assumption you must close every box and discharge every assumption in order to complete a formal proof

Proof Rules Associated with Only One " \neg " and with " \perp "

So far, we have an **elimination** rule and an **introduction** rule for double negation " \neg ¬", namely \neg ¬e and \neg ¬i, but not for single negation " \neg ". We now compensate for this lack:

•
$$\frac{\varphi \quad \neg \varphi}{\perp}$$
 $\neg e$ (or LNC for Law of Non-Contradiction)

where " \perp " (a single symbol) stands for "contradiction"

Proof Rules Associated with Only One " \neg " and with " \perp "

So far, we have an **elimination** rule and an **introduction** rule for double negation " $\neg\neg$ ", namely $\neg\neg$ e and $\neg\neg$ i, but not for single negation " \neg ". We now compensate for this lack:

•
$$\frac{\varphi \quad \neg \varphi}{\perp}$$
 $\neg e$ (or LNC for Law of Non-Contradiction)

where " \perp " (a single symbol) stands for "contradiction"

Two Derived Proof Rules

The two following rules are derived rules –

the first from rules $\rightarrow i$, $\neg i$, $\rightarrow e$, and $\neg \neg e$ (see [LCS, pp 24-25]); the second from rules $\forall i$, $\neg i$, $\neg e$, and $\neg \neg e$ (see [LCS, pp 25-26]):

Because $\neg \neg e$ is rejected in intuitionistic logic, so are **PBC** and **LEM**

(a summary of all proof rules and some derived rules in [LCS, p. 27])

formal proof of the sequent $P \vdash Q \rightarrow (P \land Q)$

formal proof of the sequent $P \vdash Q \rightarrow (P \land Q)$

formal proof of the sequent $P
ightarrow (Q
ightarrow R) dash P \land Q
ightarrow R$

 $(\mathbf{o} \mathbf{n})$

D

formal proof of the sequent $P
ightarrow (Q
ightarrow R) dash P \land Q
ightarrow R$

1	$P \to (Q \to R)$		
2	$P \wedge Q$		
3	Р	$\wedge \textbf{e}_1$	2
4	$Q \to R$	ightarrowe	1,3
5	Q	$\wedge \textbf{e}_2$	2
6	R	ightarrowe	4,5

7
$$P \land Q \to R$$
 $\to i$

formal proof of the sequent $P \land Q \rightarrow R \vdash P \rightarrow (Q \rightarrow R)$

formal proof of the sequent $P \land Q \rightarrow R \vdash P \rightarrow (Q \rightarrow R)$

1
$$P \land Q \to R$$

$$_{7} P \to (Q \to R) \qquad \qquad \rightarrow \mathsf{i}$$

formal proof of the sequent $P \rightarrow (Q \rightarrow R) \vdash (P \rightarrow Q) \rightarrow (P \rightarrow R)$

formal proof of the sequent $P \rightarrow (Q \rightarrow R) \vdash (P \rightarrow Q) \rightarrow (P \rightarrow R)$

1
$$P \rightarrow (Q \rightarrow R)$$

8
$$(P \to Q) \to (P \to R) \to i$$

Formal Proof of the Initial Sequent:	► Initial Sequent
1. $P \land \neg Q \to R$	premise
$_2 \neg R$	premise
3 P	premise
$_4 \neg Q$	assume
$_5 P \land \neg Q$	∧i 3,4
6 R	ightarrowe 1,5
7 1	¬e 6,2
$8 \neg \neg Q$	−i
9 Q	¬−e 8

(THIS PAGE INTENTIONALLY LEFT BLANK)