CS 511, Fall 2018, Handout 03

Natural Deduction, and Examples of Natural Deduction, in Propositional Logic

Assaf Kfoury

September 04, 2018

from informal/common reasoning to formal reasoning:

- IF the train arrives late AND there are NO taxis

THEN John is late for the meeting

- John is NOT late for the meeting
- the train did arrive late
- THEREFORE there were taxis

from informal/common reasoning to formal reasoning:

- IF the train arrives late AND there are NO taxis

THEN John is late for the meeting

- John is NOT late for the meeting
- the train did arrive late
- THEREFORE there were taxis
again symbolically:
- IF $P \quad$ AND $\quad($ NOT $Q) \quad$ THEN $\quad R$

from informal/common reasoning to formal reasoning:

- IF the train arrives late AND there are NO taxis

THEN John is late for the meeting

- John is NOT late for the meeting
- the train did arrive late
- THEREFORE there were taxis
again symbolically:
$\triangleright(P \wedge \neg Q) \rightarrow R$

from informal/common reasoning to formal reasoning:

- IF the train arrives late AND there are NO taxis

THEN John is late for the meeting

- John is NOT late for the meeting
- the train did arrive late
- THEREFORE there were taxis
again symbolically:
$>\left(\begin{array}{cc}P & \neg Q) \rightarrow R\end{array}\right.$
- $\quad \neg R$
- $\quad P$
- THEREFORE Q

from informal/common reasoning to formal reasoning:

- IF the train arrives late AND there are NO taxis

THEN John is late for the meeting

- John is NOT late for the meeting
- the train did arrive late
- THEREFORE there were taxis
again symbolically:
$>\left(\begin{array}{cc}P & \neg Q) \rightarrow R\end{array}\right.$
- $\quad \neg R$
- $\quad P$
$-\quad \vdash \quad Q$

from informal/common reasoning to formal reasoning:

- IF the train arrives late AND there are NO taxis THEN John is late for the meeting
- John is NOT late for the meeting
- the train did arrive late
- THEREFORE there were taxis
again symbolically:
$>\left(\begin{array}{cc}P & \neg Q) \rightarrow R\end{array}\right.$
- $\quad \neg R$
- $\quad P$
- $\vdash \quad Q$
more succintly:
$P \wedge \neg Q \rightarrow R, \neg R, P \vdash Q$
- a sequent (also called a judgment) is an expression of the form:

$$
\varphi_{1}, \ldots, \varphi_{n} \vdash \psi
$$

where:

1. $\varphi_{1}, \ldots, \varphi_{n}, \psi$ are well-formed formulas (also called wff's)
2. the symbol " \vdash " is pronounced turnstile
3. the wff's $\varphi_{1}, \ldots, \varphi_{n}$ to the left of " \mid " are called the premises (also called antecedents or hypotheses)
4. the wff ψ to the right of " \vdash " is called the conclusion (also called succedent)

- a sequent is said to be valid (also deducible or derivable) if there is a formal proof for it
- a formal proof (also called deduction or derivation) is a sequence of wff's which starts with the premises of the sequent and finishes with the conclusion of the sequent:
$\varphi_{1} \quad$ premise
$\varphi_{2} \quad$ premise
\vdots
$\varphi_{n} \quad$ premise
\vdots
$\psi \quad$ conclusion
where every wff in the deduction is obtained from the wff's preceding it using a proof rule

Examples of Proof Rules

$$
\begin{array}{lll}
& \frac{\varphi}{\varphi \wedge \psi} & \wedge \mathrm{i} \\
> & \frac{\varphi \wedge \psi}{\varphi} & \wedge \mathrm{e}_{1} \\
> & \frac{\varphi \wedge \psi}{\psi} & \wedge \mathrm{e}_{2} \\
& \frac{\varphi}{\neg \neg \varphi} & \neg \neg \mathrm{i} \\
& \frac{\neg \neg \varphi}{\varphi} & \neg \neg \mathrm{e}
\end{array} \quad \text { (cannot be used in intuitionistic logic) }
$$

Examples of Proof Rules

Examples of Proof Rules

Examples of Proof Rules

$$
\rightarrow \mathrm{i}
$$

open a box when you introduce an assumption (wff φ in rule $\rightarrow \mathrm{i}$) close the box when you discharge the assumption you must close every box and discharge every assumption in order to complete a formal proof

Proof Rules Associated with Only One " \neg " and with " \perp "

So far, we have an elimination rule and an introduction rule for double negation " $\neg \neg$ ", namely $\neg \neg$ e and $\neg \neg$ i, but not for single negation " \neg ". We now compensate for this lack:

$$
\frac{\varphi \quad \neg \varphi}{\perp} \neg \mathrm{e} \quad \text { (or LNC for Law of Non-Contradiction) }
$$

where " \perp " (a single symbol) stands for "contradiction"

Proof Rules Associated with Only One " \neg " and with " \perp "

So far, we have an elimination rule and an introduction rule for double negation " $\neg \neg$ ", namely $\neg \neg$ e and $\neg \neg$ i, but not for single negation " \neg ". We now compensate for this lack:

where " \perp " (a single symbol) stands for "contradiction"

Two Derived Proof Rules

The two following rules are derived rules -

the first from rules $\rightarrow i, \neg i, \rightarrow e$, and $\neg \neg e$ (see [LCS, pp 24-25]); the second from rules $\vee \mathrm{i}$, $\neg \mathrm{i}, \neg \mathrm{e}$, and $\neg \neg \mathrm{e}$ (see [LCS, pp 25-26]):

PBC (for Proof by Contradiction)

LEM (for Law of Excluded Middle)

Because $\neg \neg$ e is rejected in intuitionistic logic, so are PBC and LEM
(a summary of all proof rules and some derived rules in [LCS, p. 27])

Examples of Natural Deductions

formal proof of the sequent $\quad P \vdash Q \rightarrow(P \wedge Q)$

Examples of Natural Deductions

formal proof of the sequent $\quad P \vdash Q \rightarrow(P \wedge Q)$
${ }_{1} \quad P$
${ }^{2} \quad Q$
$3 \quad P \wedge Q$
$\wedge \mathrm{i} 1,2$
$4 \quad Q \rightarrow(P \wedge Q)$
$\rightarrow i$

Examples of Natural Deductions

formal proof of the sequent $\quad P \rightarrow(Q \rightarrow R) \vdash P \wedge Q \rightarrow R$

Examples of Natural Deductions

formal proof of the sequent $P \rightarrow(Q \rightarrow R) \vdash P \wedge Q \rightarrow R$

${ }_{1}$	$P \rightarrow(Q \rightarrow R)$	
${ }_{2}$	$P \wedge Q$	
3	P	$\wedge \mathrm{e}_{1} 2$
4	$Q \rightarrow R$	$\rightarrow \mathrm{e} 1,3$
5	Q	
6	R	$\wedge \mathrm{e}_{2} 2$
7	$P \wedge Q \rightarrow R$	$\rightarrow \mathrm{e} 4,5$

Examples of Natural Deductions

formal proof of the sequent $P \wedge Q \rightarrow R \vdash P \rightarrow(Q \rightarrow R)$

Examples of Natural Deductions

formal proof of the sequent $P \wedge Q \rightarrow R \vdash P \rightarrow(Q \rightarrow R)$
${ }_{1} \quad P \wedge Q \rightarrow R$
$2 P$
3 Q
$4 \quad P \wedge Q$
$\wedge i 2,3$
${ }_{5} R$
\rightarrow e 1, 4
$6 \quad Q \rightarrow R$
$\rightarrow i$
${ }_{7} \quad P \rightarrow(Q \rightarrow R)$
$\rightarrow \mathrm{i}$

Examples of Natural Deductions

formal proof of the sequent $\quad P \rightarrow(Q \rightarrow R) \vdash(P \rightarrow Q) \rightarrow(P \rightarrow R)$

Examples of Natural Deductions

formal proof of the sequent $\quad P \rightarrow(Q \rightarrow R) \vdash(P \rightarrow Q) \rightarrow(P \rightarrow R)$

$$
\begin{array}{lll}
1 & P \rightarrow(Q \rightarrow R) & \\
\hline 2 & P \rightarrow Q & \\
\hline 3 & P & \rightarrow \mathrm{e} 2,3 \\
4 & Q & \rightarrow \mathrm{e} 1,3 \\
5 & Q \rightarrow R & \rightarrow \mathrm{e} 5,4 \\
6 & R & \rightarrow \mathrm{i} \\
\hline 7 & P \rightarrow R & \rightarrow \mathrm{i}
\end{array}
$$

Formal Proof of the Initial Sequent:

1	$P \wedge \neg Q \rightarrow R$	premise
2	$\neg R$	premise
3	P	premise
4	$\neg Q$	assume
5	$P \wedge \neg Q$	\wedge i 3,4
6	R	\rightarrow e 1,5
7	\perp	$\neg \mathrm{e} 6,2$
8	$\neg \neg Q$	$\neg \mathrm{i}$
9	Q	$\neg \neg \mathrm{e} 8$

(THIS PAGE INTENTIONALLY LEFT BLANK)

