CS 511, Fall 2018, Handout 07 Semantics of *Classical* Propositional Logic (Continued) Soundness, Completeness, Compactness

Assaf Kfoury

September 11, 2018

Soundness

• Let Γ a (possibly infinite) set of propositional wff's.

If, for every model/interpretation/valuation (*i.e.*, assignment of truth values to prop atoms), it holds that:

- whenever all the wff's in Γ evaluate to ${\bf T}$,
- it is also the case that ψ evaluates to **T**,

then we write:

 $\Gamma \ \models \ \psi \qquad \text{in words, } ``\Gamma \text{ semantically entails } \psi"$

• Theorem (Soundness): If $\Gamma \vdash \psi$ then $\Gamma \models \psi$.

(Slightly stronger than the statement of Soundness in [LCS, Theorem 1.35, p 46]: If $\varphi_1, \varphi_2, \ldots, \varphi_n \vdash \psi$ then $\varphi_1, \varphi_2, \ldots, \varphi_n \models \psi$.)

Proof idea: "Course-of-values" induction on n ≥ 1 (in a later Handout 08).

Assaf Kfoury, CS 511, Fall 2018, Handout 07

Completeness

• Theorem (Completeness): If $\Gamma \models \psi$ then $\Gamma \vdash \psi$.

(Stronger than the statement of Completeness in [LCS, Corollary 1.39, p 53]: If $\varphi_1, \varphi_2, \ldots, \varphi_n \models \psi$ then $\varphi_1, \varphi_2, \ldots, \varphi_n \vdash \psi$.)

• Proof idea in [LCS] (which works if Γ is a finite set $\{\varphi_1, \ldots, \varphi_n\}$):

Establish 3 preliminary results. From $\varphi_1, \ldots, \varphi_n \models \psi$, show that: 1. $\models \varphi_1 \rightarrow (\varphi_2 \rightarrow (\varphi_3 \rightarrow (\cdots (\varphi_n \rightarrow \psi) \cdots)))$ holds. 2. $\vdash \varphi_1 \rightarrow (\varphi_2 \rightarrow (\varphi_3 \rightarrow (\cdots (\varphi_n \rightarrow \psi) \cdots)))$ is a valid sequent. 3. $\varphi_1, \varphi_2, \ldots, \varphi_n \vdash \psi$ is a valid sequent.

If Γ is infinite, we need another preliminary result: Compactness.

Compactness

- ► Γ is said to be **satisfiable** if there is a model/interpretation/valuation which satisfies/makes true every φ in Γ .
- Theorem (Compactness) (not in [LCS]):
 Γ is satisfiable iff every finite subset of Γ is satisfiable.
- Corollary (not in [LCS]): If $\Gamma \models \psi$ then there is a finite subset $\Gamma_0 \subseteq \Gamma$ such that $\Gamma_0 \models \psi$.
- For proofs of Compactness above and its corollary, click here.

(THIS PAGE INTENTIONALLY LEFT BLANK)