CS 511, Fall 2018, Handout 08

Classical Propositional Logic: Proof Sketch of its Soundness

Assaf Kfoury

September 11, 2018

Soundness once more

► Theorem (Soundness):

If
$$\varphi_1, \varphi_2, \dots, \varphi_n \vdash \psi$$
 then $\varphi_1, \varphi_2, \dots, \varphi_n \models \psi$.

- ▶ Proof: Course-of-values induction (sometimes called strong induction) on $k \ge 1$, where k is number of lines in a formal proof.
- Base step: Consider k=1 (quite trivial!). In this case n=k=1. From a given sequent $\varphi_1 \vdash \psi$, we want to show $\varphi_1 \models \psi$. Such a sequent implies $\varphi_1 = \psi$, i.e., $\psi \vdash \psi$.

Hence, $\psi \models \psi$,

which is the same as $\varphi_1 \models \psi$.

(QED for base case)

Inductive step: Consider arbitrary $k \geqslant 2$.

(Actually for $1 \leqslant k \leqslant n$, it is trivial again. Interesting case: k > n.)

Induction hypothesis (IH): Soundness holds for every k' < k.

Structure of a formal proof with n premises:

- $\begin{array}{llll} 1 & \varphi_1 & \text{premise} \\ 2 & \varphi_2 & \text{premise} \\ \vdots & \vdots & & \\ n & \varphi_n & \text{premise} \\ \vdots & \vdots & & \\ k & \psi & \text{justification} \end{array}$
- ▶ Last line in the proof, line *k*, is the result of 1 or 2 or . . . preceding it.
- Consider each possible "justification" separately: finitely many.
- Suppose "justification" is " \land i". This means line k uses lines k_1 and k_2 , with $k_1, k_2 < k$.
- ▶ Use IH on $\varphi_1, \varphi_2, \dots, \varphi_n \vdash \psi_{k_1}$ and $\varphi_1, \varphi_2, \dots, \varphi_n \vdash \psi_{k_2}$.

(THIS PAGE INTENTIONALLY LEFT BLANK)