CS 511, Fall 2018, Handout 09

Do You Believe de Morgan's Laws?

Assaf Kfoury

September 11, 2018 (adjusted September 13, 2018)

Do You Believe de Morgan's Laws Are Tautologies?

Do You Believe de Morgan's Laws Are Tautologies?

- Of course you believe they are!
- But now, for each, choose a most efficient procedure to confirm it!

Do You Believe de Morgan's Laws Are Tautologies?

- Of course you believe they are!
- But now, for each, choose a most efficient procedure to confirm it!
- de Morgan's laws can be expressed in four valid WFF's:

$$
\begin{aligned}
& \text { 1. } \vDash \neg(p \wedge q) \quad \rightarrow(\neg p \vee \neg q) \\
& \text { 2. } \vDash(\neg p \vee \neg q) \rightarrow \neg(p \wedge q) \\
& \text { 3. } \vDash \neg(p \vee q) \rightarrow(\neg p \wedge \neg q) \\
& \text { 4. } \vDash(\neg p \wedge \neg q) \rightarrow \neg(p \vee q)
\end{aligned}
$$

or, in the form of four formally deducible sequents:

$$
\begin{aligned}
& \text { 1. } \vdash \neg(p \wedge q) \rightarrow(\neg p \vee \neg q) \\
& \text { 2. } \vdash(\neg p \vee \neg q) \rightarrow \neg(p \wedge q) \\
& \text { 3. } \vdash \neg(p \vee q) \rightarrow(\neg p \wedge \neg q) \\
& \text { 4. } \vdash(\neg p \wedge \neg q) \rightarrow \neg(p \vee q)
\end{aligned}
$$

Available methods

Already discussed:

- Truth-tables to establish $\vDash \varphi$?
- Natural-deduction formal proofs to establish $\vdash \varphi$?

Yet to be discussed:

- Analytic tableaux?
- Resolution?
- DP or DPLL procedures?

Available methods

Already discussed:

- Truth-tables to establish $\vDash \varphi$?
- Natural-deduction formal proofs to establish $\vdash \varphi$?

Yet to be discussed:

- Analytic tableaux?
- Resolution?
- DP or DPLL procedures?

In this handout we restricted the comparison to truth-tables and natural-deduction proofs. We delay the comparaison with the other methods to later handouts.

Natural-deduction proof of de Morgan's law (1):
$\left.\begin{array}{||ll|}\hline 1 & \neg(p \wedge q) \\ 2 & \neg(\neg p \vee \neg q) \\ \hline 3 & \neg p \\ 4 & (\neg p \vee \neg q) \\ 5 & \text { assume } \\ \hline 6 & \neg \neg p \\ 7 & \text { assume } \\ \hline 7 & \neg q \\ 9 & \perp\end{array}\right)$

Natural-deduction proof of de Morgan's law (2):

Natural-deduction proof of de Morgan's law (3):

${ }^{1} \quad \neg(p \vee q)$	assume
${ }^{2} p$	assume
$3 \quad p \vee q$	Vi 2
$4 \perp$	ᄀe 1,3
$5 \quad \neg p$	$\neg \mathrm{i}$ 2-4
${ }_{6} \quad q$	assume
$7 \quad p \vee q$	Vi 6
$8 \perp$	ᄀe 1,7
$9 \quad \neg q$	$\neg \mathrm{i}$ 6-8
${ }_{10} \quad \neg p \wedge \neg q$	$\wedge \mathrm{i} 5,9$
${ }_{11} \quad \neg(p \vee q) \rightarrow(\neg p \wedge \neg q)$	$\rightarrow \mathrm{i}$ 1-10

Natural-deduction proof of de Morgan's law (4):

$1 \quad \neg p \wedge \neg q$	assume
$2 \neg p$	$\wedge \mathrm{e} 1$
$3 \neg q$	$\wedge \mathrm{e} 1$
$4 \quad p \vee q$	assume
$5 \quad p$	assume
$6 \quad q$	assume
$7 \quad \neg p$	assume
$8 \quad \perp$	\neg е 3,6
$9 \quad \neg \neg p$	$\neg \mathrm{i}$ 7-8
${ }_{10} p$	$\neg \neg \mathrm{e} 9$
${ }_{11} p$	Ve 4, 5-5, 6-10
$12 \perp$	$\neg \mathrm{e} 2,11$
${ }_{13} \quad \neg(p \vee q)$	$\neg \mathrm{i}$ 4-12
${ }_{14} \quad(\neg p \wedge \neg q) \rightarrow \neg(p \vee q)$	$\rightarrow \mathrm{i}$ 1-13

Natural-deduction proof of de Morgan's law (4), once more:

We organize the proof differently to make explicit how the rule " \vee e" is used on line 10; "Ve" has three antecedents, two of which are boxes (here: the first box has one line, $\{$ line 5$\}$, and the second box has five lines, $\{$ line 5 , line 6 , line 7 , line 8 , line 9$\}$.

1 $\neg p \wedge \neg q$ 2 $\neg p$ 3 $\neg q$	assume 4	$\wedge \mathrm{e}_{1} 1$
5	p	$\wedge \mathrm{e}_{2} 1$

Truth-table verification of de Morgan's laws (1) and (3):

p	q	$\neg p$	$\neg q$	$p \wedge q$	$\neg p \vee \neg q$	$\neg(p \wedge q)$	$\neg(p \wedge q) \rightarrow(\neg p \vee \neg q)$
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
p	q	$\neg p$	$\neg q$	$p \vee q$	$\neg p \wedge \neg q$	$\neg(p \vee q)$	$\neg(p \vee q) \rightarrow(\neg p \wedge \neg q)$
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}

and similarly for de Morgan's laws (2) and (4)

natural-deduction proofs versus truth-tables

- For the four de Morgan's laws on slide 2, each with two propositional variables p and q, truth-tables beat natural-deduction proofs - or do they?

natural-deduction proofs versus truth-tables

- For the four de Morgan's laws on slide 2, each with two propositional variables p and q, truth-tables beat natural-deduction proofs - or do they?
- Two of the four de Morgan's laws are intuitionistically valid and two are not. The truth tables do not show it, the natural-deduction proofs show it:

natural-deduction proofs versus truth-tables

- For the four de Morgan's laws on slide 2, each with two propositional variables p and q, truth-tables beat natural-deduction proofs - or do they?
- Two of the four de Morgan's laws are intuitionistically valid and two are not. The truth tables do not show it, the natural-deduction proofs show it:
- the formal proofs for de Morgan's (1) and (4) on slide 7 and slide 10 are not admissible/correct intuitionistically (they use rule " $\neg \neg \mathrm{e}$ ").
- the formal proofs for de Morgan's (2) and (3) on slide 8 and slide 9 are admissible/correct intuitionistically (they do not use rule " $\neg \neg \mathrm{e}$ " nor the two rules derived from it, LEM and PBC).

natural-deduction proofs versus truth-tables

- For the four de Morgan's laws on slide 2, each with two propositional variables p and q, truth-tables beat natural-deduction proofs - or do they?
- Two of the four de Morgan's laws are intuitionistically valid and two are not. The truth tables do not show it, the natural-deduction proofs show it:
- the formal proofs for de Morgan's (1) and (4) on slide 7 and slide 10 are not admissible/correct intuitionistically (they use rule " $\neg \neg \mathrm{e}$ ").
- the formal proofs for de Morgan's (2) and (3) on slide 8 and slide 9 are admissible/correct intuitionistically (they do not use rule " $\neg \neg e "$ nor the two rules derived from it, LEM and PBC).
- but perhaps we did not try hard enough to avoid the rule " $\neg \neg \mathrm{e}$ " in the formal proofs of (1) and (4)???

natural-deduction proofs versus truth-tables

- For the four de Morgan's laws on slide 2, each with two propositional variables p and q, truth-tables beat natural-deduction proofs - or do they?
- Two of the four de Morgan's laws are intuitionistically valid and two are not. The truth tables do not show it, the natural-deduction proofs show it:
- the formal proofs for de Morgan's (1) and (4) on slide 7 and slide 10 are not admissible/correct intuitionistically (they use rule " $\neg \neg \mathrm{e}$ ").
- the formal proofs for de Morgan's (2) and (3) on slide 8 and slide 9 are admissible/correct intuitionistically (they do not use rule " $\neg \neg e "$ nor the two rules derived from it, LEM and PBC).
- but perhaps we did not try hard enough to avoid the rule " $\neg \neg \mathrm{e}$ " in the formal proofs of (1) and (4)???
- it can be shown (not easy) that, however hard we may try, there are no intuitionistically admissible/correct formal proofs of de Morgan's (1) and (4).

natural-deduction proofs versus truth-tables

Exercise

1. Write a natural-deduction proof of the following WFF:

$$
\varphi_{1} \triangleq \neg(p \wedge q \wedge r) \rightarrow(\neg p \vee \neg q \vee \neg r)
$$

This is a more general version of de Morgan's law (1) on slide 7.

natural-deduction proofs versus truth-tables

Exercise

1. Write a natural-deduction proof of the following WFF:

$$
\varphi_{1} \triangleq \neg(p \wedge q \wedge r) \rightarrow(\neg p \vee \neg q \vee \neg r)
$$

This is a more general version of de Morgan's law (1) on slide 7.
2. Write a natural-deduction proof of the most general de Morgan's law (1):

$$
\varphi_{2} \triangleq \neg\left(p_{1} \wedge \cdots \wedge p_{n}\right) \rightarrow\left(\neg p_{1} \vee \cdots \vee \neg p_{n}\right)
$$

where $n \geqslant 2$.
Hint: Use the natural-deduction on slide 7 to guide you.

natural-deduction proofs versus truth-tables

Exercise

1. Write a natural-deduction proof of the following WFF:

$$
\varphi_{1} \triangleq \neg(p \wedge q \wedge r) \rightarrow(\neg p \vee \neg q \vee \neg r)
$$

This is a more general version of de Morgan's law (1) on slide 7.
2. Write a natural-deduction proof of the most general de Morgan's law (1):

$$
\varphi_{2} \triangleq \neg\left(p_{1} \wedge \cdots \wedge p_{n}\right) \rightarrow\left(\neg p_{1} \vee \cdots \vee \neg p_{n}\right)
$$

where $n \geqslant 2$.
Hint: Use the natural-deduction on slide 7 to guide you.
3. Show there is a natural-deduction proof of the generalized de Morgan's law above φ_{2} whose length (the number of lines in the proof) is $\mathcal{O}(n)$.

natural-deduction proofs versus truth-tables

Exercise

1. Write a natural-deduction proof of the following WFF:

$$
\varphi_{1} \triangleq \neg(p \wedge q \wedge r) \rightarrow(\neg p \vee \neg q \vee \neg r)
$$

This is a more general version of de Morgan's law (1) on slide 7.
2. Write a natural-deduction proof of the most general de Morgan's law (1):

$$
\varphi_{2} \triangleq \neg\left(p_{1} \wedge \cdots \wedge p_{n}\right) \rightarrow\left(\neg p_{1} \vee \cdots \vee \neg p_{n}\right)
$$

where $n \geqslant 2$.
Hint: Use the natural-deduction on slide 7 to guide you.
3. Show there is a natural-deduction proof of the generalized de Morgan's law above φ_{2} whose length (the number of lines in the proof) is $\mathcal{O}(n)$.
4. Compare the complexity of a natural-deduction proof of φ_{2} and the complexity of a truth-table verification of φ_{2}.

(THIS PAGE INTENTIONALLY LEFT BLANK)

