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Do You Believe de Morgan’s Laws Are Tautologies?

I Of course you believe they are!
I But now, for each, choose a most efficient procedure to confirm it!
I de Morgan’s laws can be expressed in four valid WFF’s:

1. |= ¬(p ∧ q) → (¬p ∨ ¬q)

2. |= (¬p ∨ ¬q) → ¬(p ∧ q)

3. |= ¬(p ∨ q) → (¬p ∧ ¬q)

4. |= (¬p ∧ ¬q) → ¬(p ∨ q)

or, in the form of four formally deducible sequents:

1. ` ¬(p ∧ q) → (¬p ∨ ¬q)

2. ` (¬p ∨ ¬q) → ¬(p ∧ q)

3. ` ¬(p ∨ q) → (¬p ∧ ¬q)

4. ` (¬p ∧ ¬q) → ¬(p ∨ q)
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Available methods

Already discussed:

I Truth-tables to establish |= ϕ?

I Natural-deduction formal proofs to establish ` ϕ?

Yet to be discussed:

I Analytic tableaux?

I Resolution?

I DP or DPLL procedures?

In this handout we restricted the comparison to
truth-tables and natural-deduction proofs. We delay the
comparaison with the other methods to later handouts.
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Natural-deduction proof of de Morgan’s law (1):

 ¬(p ∧ q) assume

 ¬(¬p ∨ ¬q) assume

 ¬p assume

 (¬p ∨ ¬q) ∨i 3

 ⊥ ¬e 2, 4

 ¬¬p ¬i 3-5

 ¬q assume

 ¬p ∨ ¬q ∨i 7

 ⊥ ¬e 2, 8

 ¬¬q ¬i 7-9

 p ¬¬e 6

 q ¬¬e 10

 p ∧ q ∧i 11, 12

 ⊥ ¬e 1, 13

 ¬¬(¬p ∨ ¬q) ¬i 2-14

 (¬p ∨ ¬q) ¬¬e 15

 ¬(p ∧ q) → (¬p ∨ ¬q) →i 1-16

1
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Natural-deduction proof of de Morgan’s law (2):

 ¬p ∨ ¬q assume

 p ∧ q assume

 p ∧e1
 q ∧e2
 ¬p assume

 ¬q assume

 p assume

 ⊥ ¬e 4, 6

 ¬p ¬i 7-8

 ¬p ∨e 1, 5-5, 6-9

 ⊥ ¬e 3, 10

 ¬(p ∧ q) ¬i 2-11

 (¬p ∨ ¬q) → ¬(p ∧ q) →i 1-12

1
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Natural-deduction proof of de Morgan’s law (3):

 ¬(p ∨ q) assume

 p assume

 p ∨ q ∨i 2

 ⊥ ¬e 1, 3

 ¬p ¬i 2-4

 q assume

 p ∨ q ∨i 6

 ⊥ ¬e 1, 7

 ¬q ¬i 6-8

 ¬p ∧ ¬q ∧i 5, 9

 ¬(p ∨ q) → (¬p ∧ ¬q) →i 1-10

1
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Natural-deduction proof of de Morgan’s law (4):

 ¬p ∧ ¬q assume

 ¬p ∧e 1

 ¬q ∧e 1

 p ∨ q assume

 p assume

 q assume

 ¬p assume

 ⊥ ¬e 3, 6

 ¬¬p ¬i 7-8

 p ¬¬e 9

 p ∨e 4, 5-5, 6-10

 ⊥ ¬e 2, 11

 ¬(p ∨ q) ¬i 4-12

 (¬p ∧ ¬q) → ¬(p ∨ q) →i 1-13

1
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Natural-deduction proof of de Morgan’s law (4), once more:

We organize the proof differently to make explicit how the rule “∨e” is used on line 10;
“∨e” has three antecedents, two of which are boxes (here: the first box has one line,
{line 5}, and the second box has five lines, {line 5, line 6, line 7, line 8, line 9}.

 ¬p ∧ ¬q assume

 ¬p ∧e1 1

 ¬q ∧e2 1

 p ∨ q assume

 p assume









q assume

¬p assume

⊥ ¬e 3, 5

¬¬p ¬i 6-7

p ¬¬e 8

 p ∨e 4, 5-5, 5-9

 ⊥ ¬e 2, 10

 ¬(p ∨ q) ¬i 4-11

 (¬p ∧ ¬q) → ¬(p ∨ q) →i 1-12

1
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Truth-table verification of de Morgan’s laws (1) and (3):

p q ¬p ¬q p ∧ q ¬p ∨ ¬q ¬(p ∧ q) ¬(p ∧ q)→ (¬p ∨ ¬q)
T T F F T F F T
T F F T F T T T
F T T F F T T T
F F T T F T T T

p q ¬p ¬q p ∨ q ¬p ∧ ¬q ¬(p ∨ q) ¬(p ∨ q)→ (¬p ∧ ¬q)
T T F F T F F T
T F F T T F F T
F T T F T F F T
F F T T F T T T

and similarly for de Morgan’s laws (2) and (4)
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natural-deduction proofs versus truth-tables

I For the four de Morgan’s laws on slide 2, each with two propositional variables p
and q, truth-tables beat natural-deduction proofs – or do they?

I Two of the four de Morgan’s laws are intuitionistically valid and two are not. The
truth tables do not show it, the natural-deduction proofs show it:

I the formal proofs for de Morgan’s (1) and (4) on slide 7 and slide 10
are not admissible/correct intuitionistically (they use rule “¬¬e”).

I the formal proofs for de Morgan’s (2) and (3) on slide 8 and slide 9
are admissible/correct intuitionistically (they do not use rule
“¬¬e” nor the two rules derived from it, LEM and PBC).

I but perhaps we did not try hard enough to avoid the rule “¬¬e” in the
formal proofs of (1) and (4)???

I it can be shown (not easy) that, however hard we may try, there are
no intuitionistically admissible/correct formal proofs of de Morgan’s
(1) and (4).
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natural-deduction proofs versus truth-tables
Exercise

1. Write a natural-deduction proof of the following WFF:

ϕ1 , ¬(p ∧ q ∧ r) → (¬p ∨ ¬q ∨ ¬r)

This is a more general version of de Morgan’s law (1) on slide 7.

2. Write a natural-deduction proof of the most general de Morgan’s law (1):

ϕ2 , ¬(p1 ∧ · · · ∧ pn) → (¬p1 ∨ · · · ∨ ¬pn)

where n > 2.

Hint: Use the natural-deduction on slide 7 to guide you.

3. Show there is a natural-deduction proof of the generalized de Morgan’s law
above ϕ2 whose length (the number of lines in the proof) is O(n).

4. Compare the complexity of a natural-deduction proof of ϕ2 and the complexity of
a truth-table verification of ϕ2.
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