
CS 511, Fall 2018, Handout 11

Resolution in Propositional Logic

Assaf Kfoury

18 September 2018

(last modified on: 24 September 2018)

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 1 of 38

Origins and background

I The resolution method was introduced around 1960 by Martin Davis (1928-) and
Hilary Putnam (1926-2016), then gradually adapted and developed in later years.

I Like the tableaux method, the resolution method is said to be refutation-based.
This means it tries to find reasons why a wff ϕ is a logical contradiction. More
generally, it tries to find reasons why a finite set Γ of wff’s is not satisfiable.

I Like the tableaux method, it turns out that resolution is refutation-complete.

I As pointed out in Handout 10, refutation completeness is not a serious limitation
of the method, e.g., it can also be used to decide any semantic entailment Γ |= ϕ,
with Γ a finite set of wff’s and ϕ any wff (not restricted to ϕ = ⊥).

I Later in the handout, we show that resolution can also be used to decide
satisfiability of an arbitrary wff ϕ.

I This handout is limited to the resolution method for classical propositional logic,
its extension to first-order logic is taken up in a later handout.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 2 of 38

Efficient Transformation Into CNF
Resolution assumes that a wff ϕ to be tested for non-satisfiability is in CNF.

I Before applying the method, we therefore need an efficient way of translating an
arbitrary wff ϕ into another wff ψ in CNF.

I Bad news: Translating an arbitrary ϕ into an equivalent CNF ψ generally results
in an exponential blow-up (see Handout 06).

I Good news: It is possible to efficiently translate an arbitrary wff ϕ into another wff
ψ in CNF so that ϕ and ψ are equisatisfiable though not necessarily equivalent.

(There is more than one way of doing this – see next slide. For more on
equisatisfiability, click here .)

I If ϕ is a propositional wff in CNF, we may write:

ϕ = {C1, . . . ,Cn}, i.e., a finite set of clauses

instead of ϕ = C1 ∧ · · · ∧ Cn where each Ci is a disjunction of literals.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 3 of 38

https://en.wikipedia.org/wiki/Equisatisfiability

Efficient Transformation Into CNF

1. Already pointed out in Handout 06, the transformation of the wff:

ϕ = (x1 ∧ y1) ∨ (x2 ∧ y2) ∨ · · · ∨ (xn ∧ yn)

into CNF produces an equivalent wff of size O(2n), an exponential blow-up.

2. However, the transformation of ϕ into the following wff ψ:

ψ = (z1 ∨ · · · ∨ zn) ∧ (¬z1 ∨ x1) ∧ (¬z1 ∨ y1) ∧ · · · ∧ (¬zn ∨ xn) ∧ (¬zn ∨ yn)

produces a wff in CNF of size O(n) such that ϕ and ψ are equisatisfiable (though
not equivalent), where {z1, . . . , zn} are fresh propositional variables.

Exercise: Show that ϕ (in part 1 above) and ψ (in part 2) are equisatisfiable, i.e., if
there is truth-value assignment σ satisfying ϕ (resp. ψ), then there is a truth-value
assignment σ′ satisfying ψ (resp. ϕ).

3. An alternative translation of a wff ϕ into an equisatisfiable ψ is the so-called Tseitin
transformation. The Tseitin transformation includes also the clauses zi ∨ ¬xi ∨ ¬yi

for every i = 1, . . . , n. With these clauses, the initial wff ϕ implies zi ≡ xi ∧ yi; in
the new wff ψ we can view zi as a name for “xi ∧ yi”.

Exercise: Look up “Tseitin transformation” on the Web for details, e.g. here .

4. A specific efficient algorithm, called CNF(), to transform an arbitrary propositional
wff ϕ into an equisatisfiable wff is presented next.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 4 of 38

https://en.wikipedia.org/wiki/Tseytin_transformation

Efficient Transformation Into CNF
The definition of CNF() is by induction on wff’s. Because it is inductive, it translates into
a recursive algorithm, where ∆ is a finite set of clauses:1

1. CNF(p,∆) := 〈p,∆〉

2. CNF(¬ϕ,∆) := 〈¬`,∆′〉 where CNF(ϕ,∆) = 〈`,∆′〉

3. CNF(ϕ1 ∧ ϕ2,∆) := 〈p,∆′〉 where

CNF(ϕ1,∆) = 〈`1,∆1〉 , CNF(ϕ2,∆1) = 〈`2,∆2〉 ,

p is a fresh atom (propositional variable),

∆′ = ∆2 ∪ {¬p ∨ `1, ¬p ∨ `2, ¬`1 ∨ ¬`2 ∨ p}

4. CNF(ϕ1 ∨ ϕ2,∆) := 〈p,∆′〉 where

CNF(ϕ1,∆) = 〈`1,∆1〉 , CNF(ϕ2,∆1) = 〈`2,∆2〉 ,

p is a fresh atom (propositional variable),

∆′ = ∆2 ∪ {¬p ∨ `1 ∨ `2, ¬`1 ∨ p, ¬`2 ∨ p}

(If you prefer, every “:=” above can be replaced by “return”.)

1
Taken from Leonardo De Moura, “SMT Solvers: Theory and Implementation”, Microsoft Research 2008.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 5 of 38

Efficient Transformation Into CNF

Theorem
Let ϕ be an arbitrary propositional wff and let CNF(ϕ,∅) = 〈`,∆〉.
Then ϕ is satisfiable iff {`} ∪∆ is satisfiable.

Proof.
Left to you. Hint: You will need to use structural induction on ϕ.

Exercise
Carry out the transformation CNF(ϕ,∅) where

ϕ := ¬
(
(q1 ∨ ¬q2) ∧ q3

)
Exercise
Search the Web for improvements on the transformation CNF().

Hint: How about introducing multi-arity ∧ and multi-arity ∨?
But there are other possible improvements

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 6 of 38

Resolution Rule

I The rule is limited to propositional wff’s in CNF.

I The rule can be used by itself to establish that an arbitrary CNF is unsatisfiable.

I CNF clauses are each a disjunction of literals (atoms and negated atoms).

I The antecedents of the resolution rule are two clauses of a CNF:(
`1 ∨ · · · ∨ `p−1 ∨ `p ∨ `p+1 · · · ∨ `m

)
and(

`′1 ∨ · · · ∨ `′q−1 ∨ `′q ∨ `′q+1 · · · ∨ `′n
)

where all `i and `′j are literals, and `′q = ¬`p .

I The resolution rule applied to the pair (`p, `
′
q) where `′q = ¬`p is:(

`1 ∨ · · · ∨ `p−1 ∨ `p ∨ `p+1 · · · ∨ `m

) (
`′1 ∨ · · · ∨ `

′
q−1 ∨ `′q ∨ `′q+1 · · · ∨ `

′
n

)
`1 ∨ · · · ∨ `p−1 ∨ `p+1 · · · ∨ `m ∨ `′1 ∨ · · · ∨ `

′
q−1 ∨ `

′
q+1 · · · ∨ `′n

New clause produced by resolution (below the line) is the resolvent. Note that `p

and `′q are not mentioned in the resolvent, so that the size of the resolvent is less
than the size of the two antecedents together.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 7 of 38

Resolution Rule

I The rule is limited to propositional wff’s in CNF.

I The rule can be used by itself to establish that an arbitrary CNF is unsatisfiable.

I CNF clauses are each a disjunction of literals (atoms and negated atoms).

I The antecedents of the resolution rule are two clauses of a CNF:(
`1 ∨ · · · ∨ `p−1 ∨ `p ∨ `p+1 · · · ∨ `m

)
and(

`′1 ∨ · · · ∨ `′q−1 ∨ `′q ∨ `′q+1 · · · ∨ `′n
)

where all `i and `′j are literals, and `′q = ¬`p .

I The resolution rule applied to the pair (`p, `
′
q) where `′q = ¬`p is:(

`1 ∨ · · · ∨ `p−1 ∨ `p ∨ `p+1 · · · ∨ `m

) (
`′1 ∨ · · · ∨ `

′
q−1 ∨ `′q ∨ `′q+1 · · · ∨ `

′
n

)
`1 ∨ · · · ∨ `p−1 ∨ `p+1 · · · ∨ `m ∨ `′1 ∨ · · · ∨ `

′
q−1 ∨ `

′
q+1 · · · ∨ `′n

New clause produced by resolution (below the line) is the resolvent. Note that `p

and `′q are not mentioned in the resolvent, so that the size of the resolvent is less
than the size of the two antecedents together.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 8 of 38

Resolution Rule

I The rule is limited to propositional wff’s in CNF.

I The rule can be used by itself to establish that an arbitrary CNF is unsatisfiable.

I CNF clauses are each a disjunction of literals (atoms and negated atoms).

I The antecedents of the resolution rule are two clauses of a CNF:(
`1 ∨ · · · ∨ `p−1 ∨ `p ∨ `p+1 · · · ∨ `m

)
and(

`′1 ∨ · · · ∨ `′q−1 ∨ `′q ∨ `′q+1 · · · ∨ `′n
)

where all `i and `′j are literals, and `′q = ¬`p .

I The resolution rule applied to the pair (`p, `
′
q) where `′q = ¬`p is:(

`1 ∨ · · · ∨ `p−1 ∨ `p ∨ `p+1 · · · ∨ `m

) (
`′1 ∨ · · · ∨ `

′
q−1 ∨ `′q ∨ `′q+1 · · · ∨ `

′
n

)
`1 ∨ · · · ∨ `p−1 ∨ `p+1 · · · ∨ `m ∨ `′1 ∨ · · · ∨ `

′
q−1 ∨ `

′
q+1 · · · ∨ `′n

New clause produced by resolution (below the line) is the resolvent. Note that `p

and `′q are not mentioned in the resolvent, so that the size of the resolvent is less
than the size of the two antecedents together.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 9 of 38

Resolution Rule

I The resolution rule applied to the pair (`p, `
′
q) where `′q = ¬`p in the special

case when the two antecedents have each only one literal:

`p `′q

⊥
In this case the resolvent is ⊥ (falsity).

Exercise
Show that MP (modus ponens) can be viewed as a special case of the resolution rule.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 10 of 38

Resolution Rule: how to use it

I Before some examples, how strong is resolution?

I Resolution is a sound and refutation-complete system of formal proofs for
CNF’s, i.e., resolution is strong enough!

From [LCS, Chapt 1], we already know:

Theorem
Let ϕ be a propositional wff. The following are equivalent statements:

1. ϕ is formally derivable using natural deduction.

2. ϕ is a tautology, i.e., entries of last column of its truth-table are all T.

3. ¬ϕ is a contradiction, i.e., ⊥ is formally derivable from ¬ϕ using natural deduction.

4. ¬ϕ is unsatisfiable, i.e., entries of last column of its truth-table are all F.

We can specialize preceding theorem to CNF’s and restrict it to parts 3 and 4, to express the
soundness (part 3⇒ part 4) and refutation-completeness (part 4⇒ part 3) of resolution:

Theorem
Let ψ be a propositional wff in CNF. The following are equivalent statements:

3. ψ is a contradiction, i.e., ⊥ is derivable from ψ using resolution, in shorthand ψ `res ⊥.

4. ψ is unsatisfiable, i.e., entries of last column of its truth-table are all F.

Soundness Proof Refutation-Completeness Proof

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 11 of 38

Resolution Rule: how to use it

I Before some examples, how strong is resolution?

I Resolution is a sound and refutation-complete system of formal proofs for
CNF’s, i.e., resolution is strong enough!

From [LCS, Chapt 1], we already know:

Theorem
Let ϕ be a propositional wff. The following are equivalent statements:

1. ϕ is formally derivable using natural deduction.

2. ϕ is a tautology, i.e., entries of last column of its truth-table are all T.

3. ¬ϕ is a contradiction, i.e., ⊥ is formally derivable from ¬ϕ using natural deduction.

4. ¬ϕ is unsatisfiable, i.e., entries of last column of its truth-table are all F.

We can specialize preceding theorem to CNF’s and restrict it to parts 3 and 4, to express the
soundness (part 3⇒ part 4) and refutation-completeness (part 4⇒ part 3) of resolution:

Theorem
Let ψ be a propositional wff in CNF. The following are equivalent statements:

3. ψ is a contradiction, i.e., ⊥ is derivable from ψ using resolution, in shorthand ψ `res ⊥.

4. ψ is unsatisfiable, i.e., entries of last column of its truth-table are all F.

Soundness Proof Refutation-Completeness Proof

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 12 of 38

Resolution Rule: how to use it

I Before some examples, how strong is resolution?

I Resolution is a sound and refutation-complete system of formal proofs for
CNF’s, i.e., resolution is strong enough!

From [LCS, Chapt 1], we already know:

Theorem
Let ϕ be a propositional wff. The following are equivalent statements:

1. ϕ is formally derivable using natural deduction.

2. ϕ is a tautology, i.e., entries of last column of its truth-table are all T.

3. ¬ϕ is a contradiction, i.e., ⊥ is formally derivable from ¬ϕ using natural deduction.

4. ¬ϕ is unsatisfiable, i.e., entries of last column of its truth-table are all F.

We can specialize preceding theorem to CNF’s and restrict it to parts 3 and 4, to express the
soundness (part 3⇒ part 4) and refutation-completeness (part 4⇒ part 3) of resolution:

Theorem
Let ψ be a propositional wff in CNF. The following are equivalent statements:

3. ψ is a contradiction, i.e., ⊥ is derivable from ψ using resolution, in shorthand ψ `res ⊥.

4. ψ is unsatisfiable, i.e., entries of last column of its truth-table are all F.

Soundness Proof Refutation-Completeness Proof

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 13 of 38

Resolution Rule: how to use it

I Before some examples, how strong is resolution?

I Resolution is a sound and refutation-complete system of formal proofs for
CNF’s, i.e., resolution is strong enough!

From [LCS, Chapt 1], we already know:

Theorem
Let ϕ be a propositional wff. The following are equivalent statements:

1. ϕ is formally derivable using natural deduction.

2. ϕ is a tautology, i.e., entries of last column of its truth-table are all T.

3. ¬ϕ is a contradiction, i.e., ⊥ is formally derivable from ¬ϕ using natural deduction.

4. ¬ϕ is unsatisfiable, i.e., entries of last column of its truth-table are all F.

We can specialize preceding theorem to CNF’s and restrict it to parts 3 and 4, to express the
soundness (part 3⇒ part 4) and refutation-completeness (part 4⇒ part 3) of resolution:

Theorem
Let ψ be a propositional wff in CNF. The following are equivalent statements:

3. ψ is a contradiction, i.e., ⊥ is derivable from ψ using resolution, in shorthand ψ `res ⊥.

4. ψ is unsatisfiable, i.e., entries of last column of its truth-table are all F.

Soundness Proof Refutation-Completeness Proof

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 14 of 38

Resolution Rule: how to use it

I Observe carefully how refutation-completeness is used:

1. From the two clauses {p, q}, representing the CNF p ∧ q, we canNOT apply
resolution to formally derive p ∨ q, even though we know p, q |= p ∨ q.
This is why resolution is not complete, but only refutation-complete.

2. Completeness of another formal-proof system, such as natural deduction,

means that if p, q |= p ∨ q then p, q `ND p ∨ q .

This follows from the standard statement of completeness

for natural deduction.

3. From outside the resolution-based formal-proof system, i.e., at the

meta-level, we know: if p, q 6`ND p ∨ q then p, q 6|= p ∨ q , which is again

completeness for natural deduction stated contrapositively.
Can we use resolution to show that if p, q 6`ND p ∨ q then p, q 6|= p ∨ q??

4. Yes, this is possible. At the meta-level, p, q 6`ND p ∨ q means the same thing
as {p, q,¬(p ∨ q)} is contradictory (why?), and resolution can derive this
contradiction, which will in turn imply p, q 6|= p ∨ q, which will also imply
p, q |= ¬(p ∨ q) (why?).

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 15 of 38

Resolution Rule: how to use it

Suppose we want to decide whether wff ψ is formally derivable from a finite

knowledge base KB = {ϕ1, . . . , ϕn}, i.e., whether KB `ND ψ using natural deduction

(or some other formal proof system).

The following are the steps to show that KB `res ψ using resolution instead:

I Negate ψ and add ¬ψ to KB.

I Transform KB ∪ {¬ψ} into a single CNF, thus obtaining a finite set of clauses.

I Apply the resolution rule repeatedly, until there is no resolvable pair of clauses.
(The procedure is bound to terminate – why?)

I Every time the resolution rule is applied, add the resolvent (which is a new
clause) to the knowledge base.

I If ⊥ (the empty clause) is produced, stop and report that the original ψ is formally
derivable from ϕ1, . . . , ϕn, i.e., ϕ1, . . . , ϕn `res ψ.

I An example is on the next slide.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 16 of 38

Resolution Rule: how to use it

Suppose we want to decide whether wff ψ is formally derivable from a finite

knowledge base KB = {ϕ1, . . . , ϕn}, i.e., whether KB `ND ψ using natural deduction

(or some other formal proof system).

The following are the steps to show that KB `res ψ using resolution instead:

I Negate ψ and add ¬ψ to KB.

I Transform KB ∪ {¬ψ} into a single CNF, thus obtaining a finite set of clauses.

I Apply the resolution rule repeatedly, until there is no resolvable pair of clauses.
(The procedure is bound to terminate – why?)

I Every time the resolution rule is applied, add the resolvent (which is a new
clause) to the knowledge base.

I If ⊥ (the empty clause) is produced, stop and report that the original ψ is formally
derivable from ϕ1, . . . , ϕn, i.e., ϕ1, . . . , ϕn `res ψ.

I An example is on the next slide.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 17 of 38

Resolution Rule: small example
Is the wff ¬P derivable from the knowledge base {P→ Q,Q→ R,¬R}?
I Negate the initial wff ¬¬P = P and add it to the knowledge base.

I Transform all wff’s in the knowledge base into CNF: {¬P ∨ Q,¬Q ∨ R,¬R,P}.
I Putting down every clause in the knowledge base first, then applying the resolution rule

repeatedly, we obtain:

 ¬P ∨ Q

 ¬Q ∨ R

 ¬R

 P

 Q resolve 1, 4

 R resolve 2, 5

 ⊥ resolve 3, 6

I Stop and report that the initial wff ¬P is formally derivable from {P→ Q,Q→ R,¬R}.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 18 of 38

Resolution Rule: small example
Is the wff ¬P derivable from the knowledge base {P→ Q,Q→ R,¬R}?
I Negate the initial wff ¬¬P = P and add it to the knowledge base.

I Transform all wff’s in the knowledge base into CNF: {¬P ∨ Q,¬Q ∨ R,¬R,P}.
I Putting down every clause in the knowledge base first, then applying the resolution rule

repeatedly, we obtain:

 ¬P ∨ Q

 ¬Q ∨ R

 ¬R

 P

 Q resolve 1, 4

 R resolve 2, 5

 ⊥ resolve 3, 6

I Stop and report that the initial wff ¬P is formally derivable from {P→ Q,Q→ R,¬R}.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 19 of 38

Resolution Rule: small example
Is the wff ¬P derivable from the knowledge base {P→ Q,Q→ R,¬R}?
I Negate the initial wff ¬¬P = P and add it to the knowledge base.

I Transform all wff’s in the knowledge base into CNF: {¬P ∨ Q,¬Q ∨ R,¬R,P}.
I Putting down every clause in the knowledge base first, then applying the resolution rule

repeatedly, we obtain:

 ¬P ∨ Q

 ¬Q ∨ R

 ¬R

 P

 Q resolve 1, 4

 R resolve 2, 5

 ⊥ resolve 3, 6

I Stop and report that the initial wff ¬P is formally derivable from {P→ Q,Q→ R,¬R}.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 20 of 38

Resolution Rule: how to use it

Suppose we want to decide whether propositional wff ϕ is satisfiable.

The following are the steps of a procedure to decide satisfiability using resolution:

I Transform ϕ into CNF, to obtain a finite set of clauses, the initial knowledge base.

I Apply the resolution rule repeatedly, until there is no resolvable pair of clauses.
(The procedure is bound to terminate – why?)

I Every time the resolution rule is applied, add the resolvent (a new clause) to the
knowledge base.

I If ⊥ (the empty clause) is produced, stop and report that the original ϕ is
unsatisfiable.

I If there are no more resolvable pair of clauses (and ⊥ is not produced), stop and
report that the original ϕ is satisfiable.

I An example is on the next slide.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 21 of 38

Resolution Rule: how to use it

Suppose we want to decide whether propositional wff ϕ is satisfiable.

The following are the steps of a procedure to decide satisfiability using resolution:

I Transform ϕ into CNF, to obtain a finite set of clauses, the initial knowledge base.

I Apply the resolution rule repeatedly, until there is no resolvable pair of clauses.
(The procedure is bound to terminate – why?)

I Every time the resolution rule is applied, add the resolvent (a new clause) to the
knowledge base.

I If ⊥ (the empty clause) is produced, stop and report that the original ϕ is
unsatisfiable.

I If there are no more resolvable pair of clauses (and ⊥ is not produced), stop and
report that the original ϕ is satisfiable.

I An example is on the next slide.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 22 of 38

Resolution Rule: small example
Let ϕ := (q1 ∨ q2 ∨ q3) ∧ (q2 ∨ ¬q3 ∨ ¬q4) ∧ (¬q2 ∨ q5), which is already a CNF.

I Is ϕ satisfiable?

I Write down ϕ as a set of clauses, the initial knowledge base:
{q1 ∨ q2 ∨ q3, q2 ∨ ¬q3 ∨ ¬q4, ¬q2 ∨ q5}.

I Put down every clause in the knowledge base first, then apply resolution repeatedly:

 q1 ∨ q2 ∨ q3

 q2 ∨ ¬q3 ∨ ¬q4

 ¬q2 ∨ q5

 q1 ∨ q3 ∨ q5 resolve 1, 3

 ¬q3 ∨ ¬q4 ∨ q5 resolve 2, 3

 q1 ∨ ¬q4 ∨ q5 resolve 4, 5

I there are no more resolvable pairs of clauses, stop and report ϕ is satisfiable.

Exercise: Extract a truth-value assignment for the initial ϕ from the resolution proof. Does
your method for extracting a truth-value assignment work in general, i.e., for any initial wff? 2

2
Hint: In contrast to the tableaux method, the resolution method does not give an immediate obvious way to define a satisfying truth-value assignment.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 23 of 38

Resolution Rule: small example
Let ϕ := (q1 ∨ q2 ∨ q3) ∧ (q2 ∨ ¬q3 ∨ ¬q4) ∧ (¬q2 ∨ q5), which is already a CNF.

I Is ϕ satisfiable?

I Write down ϕ as a set of clauses, the initial knowledge base:
{q1 ∨ q2 ∨ q3, q2 ∨ ¬q3 ∨ ¬q4, ¬q2 ∨ q5}.

I Put down every clause in the knowledge base first, then apply resolution repeatedly:

 q1 ∨ q2 ∨ q3

 q2 ∨ ¬q3 ∨ ¬q4

 ¬q2 ∨ q5

 q1 ∨ q3 ∨ q5 resolve 1, 3

 ¬q3 ∨ ¬q4 ∨ q5 resolve 2, 3

 q1 ∨ ¬q4 ∨ q5 resolve 4, 5

I there are no more resolvable pairs of clauses, stop and report ϕ is satisfiable.

Exercise: Extract a truth-value assignment for the initial ϕ from the resolution proof. Does
your method for extracting a truth-value assignment work in general, i.e., for any initial wff? 2

2
Hint: In contrast to the tableaux method, the resolution method does not give an immediate obvious way to define a satisfying truth-value assignment.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 24 of 38

Resolution Rule: small example
Let ϕ := (q1 ∨ q2 ∨ q3) ∧ (q2 ∨ ¬q3 ∨ ¬q4) ∧ (¬q2 ∨ q5), which is already a CNF.

I Is ϕ satisfiable?

I Write down ϕ as a set of clauses, the initial knowledge base:
{q1 ∨ q2 ∨ q3, q2 ∨ ¬q3 ∨ ¬q4, ¬q2 ∨ q5}.

I Put down every clause in the knowledge base first, then apply resolution repeatedly:

 q1 ∨ q2 ∨ q3

 q2 ∨ ¬q3 ∨ ¬q4

 ¬q2 ∨ q5

 q1 ∨ q3 ∨ q5 resolve 1, 3

 ¬q3 ∨ ¬q4 ∨ q5 resolve 2, 3

 q1 ∨ ¬q4 ∨ q5 resolve 4, 5

I there are no more resolvable pairs of clauses, stop and report ϕ is satisfiable.

Exercise: Extract a truth-value assignment for the initial ϕ from the resolution proof. Does
your method for extracting a truth-value assignment work in general, i.e., for any initial wff? 2

2
Hint: In contrast to the tableaux method, the resolution method does not give an immediate obvious way to define a satisfying truth-value assignment.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 25 of 38

Resolution Rule: small example
Let ϕ := (q1 ∨ q2 ∨ q3) ∧ (q2 ∨ ¬q3 ∨ ¬q4) ∧ (¬q2 ∨ q5), which is already a CNF.

I Is ϕ satisfiable?

I Write down ϕ as a set of clauses, the initial knowledge base:
{q1 ∨ q2 ∨ q3, q2 ∨ ¬q3 ∨ ¬q4, ¬q2 ∨ q5}.

I Put down every clause in the knowledge base first, then apply resolution repeatedly:

 q1 ∨ q2 ∨ q3

 q2 ∨ ¬q3 ∨ ¬q4

 ¬q2 ∨ q5

 q1 ∨ q3 ∨ q5 resolve 1, 3

 ¬q3 ∨ ¬q4 ∨ q5 resolve 2, 3

 q1 ∨ ¬q4 ∨ q5 resolve 4, 5

I there are no more resolvable pairs of clauses, stop and report ϕ is satisfiable.

Exercise: Extract a truth-value assignment for the initial ϕ from the resolution proof. Does
your method for extracting a truth-value assignment work in general, i.e., for any initial wff? 2

2
Hint: In contrast to the tableaux method, the resolution method does not give an immediate obvious way to define a satisfying truth-value assignment.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 26 of 38

Resolution Rule: another small example
Let ψ := (p1 ∨ p2) ∧ (p1 ∨ ¬p2) ∧ (¬p1 ∨ p3) ∧ (¬p1 ∨ ¬p3), already a CNF.

I Is ψ satisfiable?

I Write down ϕ as a set of clauses, the initial knowledge base:
{p1 ∨ p2, p1 ∨ ¬p2, ¬p1 ∨ p3, ¬p1 ∨ ¬p3}.

I Put down every clause in the knowledge base first, then apply the resolution rule:

 p1 ∨ p2

 p1 ∨ ¬p2

 ¬p1 ∨ p3

 ¬p1 ∨ ¬p3

 p1 resolve 1, 2

 p3 resolve 3, 5

 ¬p3 resolve 4, 5

 ⊥ resolve 6, 7

I stop and report ψ is unsatisfiable.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 27 of 38

Resolution Rule: another small example
Let ψ := (p1 ∨ p2) ∧ (p1 ∨ ¬p2) ∧ (¬p1 ∨ p3) ∧ (¬p1 ∨ ¬p3), already a CNF.

I Is ψ satisfiable?

I Write down ϕ as a set of clauses, the initial knowledge base:
{p1 ∨ p2, p1 ∨ ¬p2, ¬p1 ∨ p3, ¬p1 ∨ ¬p3}.

I Put down every clause in the knowledge base first, then apply the resolution rule:

 p1 ∨ p2

 p1 ∨ ¬p2

 ¬p1 ∨ p3

 ¬p1 ∨ ¬p3

 p1 resolve 1, 2

 p3 resolve 3, 5

 ¬p3 resolve 4, 5

 ⊥ resolve 6, 7

I stop and report ψ is unsatisfiable.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 28 of 38

Resolution Rule: another small example
Let ψ := (p1 ∨ p2) ∧ (p1 ∨ ¬p2) ∧ (¬p1 ∨ p3) ∧ (¬p1 ∨ ¬p3), already a CNF.

I Is ψ satisfiable?

I Write down ϕ as a set of clauses, the initial knowledge base:
{p1 ∨ p2, p1 ∨ ¬p2, ¬p1 ∨ p3, ¬p1 ∨ ¬p3}.

I Put down every clause in the knowledge base first, then apply the resolution rule:

 p1 ∨ p2

 p1 ∨ ¬p2

 ¬p1 ∨ p3

 ¬p1 ∨ ¬p3

 p1 resolve 1, 2

 p3 resolve 3, 5

 ¬p3 resolve 4, 5

 ⊥ resolve 6, 7

I stop and report ψ is unsatisfiable.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 29 of 38

Resolution Rule: another small example
Let ψ := (p1 ∨ p2) ∧ (p1 ∨ ¬p2) ∧ (¬p1 ∨ p3) ∧ (¬p1 ∨ ¬p3), already a CNF.

I Is ψ satisfiable?

I Write down ϕ as a set of clauses, the initial knowledge base:
{p1 ∨ p2, p1 ∨ ¬p2, ¬p1 ∨ p3, ¬p1 ∨ ¬p3}.

I Put down every clause in the knowledge base first, then apply the resolution rule:

 p1 ∨ p2

 p1 ∨ ¬p2

 ¬p1 ∨ p3

 ¬p1 ∨ ¬p3

 p1 resolve 1, 2

 p3 resolve 3, 5

 ¬p3 resolve 4, 5

 ⊥ resolve 6, 7

I stop and report ψ is unsatisfiable.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 30 of 38

Resolution Rule: improvements in using it

After each application of the resolution rule:

I Simple improvement : remove repeated literals in the resolvent.

I Simple improvement : if the resolvent contains complementary literals, discard
the resolvent instead of adding it to knowledge base.

In this case, the resolvent is a tautology, satisfied by every truth-value assignment.

I Advanced improvements : see DPLL-based SAT solvers . . . (in a later handout).

Two important heuristics in choosing the next resolution step:

I Give preference to a resolution involving a unit clause (a clause with one literal),
because it produces a shorter clause as a resolvent.

I Use the so-called set-of-support rule , i.e., give preference to a resolution
involving the negated goal or any clause derived from the negated goal, because
we are trying to produce a contradiction that follows from the negated goal and
these are the most “relevant” clauses.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 31 of 38

Resolution Rule: improvements in using it

After each application of the resolution rule:

I Simple improvement : remove repeated literals in the resolvent.

I Simple improvement : if the resolvent contains complementary literals, discard
the resolvent instead of adding it to knowledge base.

In this case, the resolvent is a tautology, satisfied by every truth-value assignment.

I Advanced improvements : see DPLL-based SAT solvers . . . (in a later handout).

Two important heuristics in choosing the next resolution step:

I Give preference to a resolution involving a unit clause (a clause with one literal),
because it produces a shorter clause as a resolvent.

I Use the so-called set-of-support rule , i.e., give preference to a resolution
involving the negated goal or any clause derived from the negated goal, because
we are trying to produce a contradiction that follows from the negated goal and
these are the most “relevant” clauses.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 32 of 38

Resolution Rule: proof of soundness

Theorem
Let ψ be a CNF, ψ = {C1, . . . ,Cn}, where every clause Ci is a finite disjunct of literals.
Pose Ψ0 = ψ and apply resolution repeatedly to Ψ0 to obtain the sequence of CNF’s:

Ψ0 Ψ1 Ψ2 · · · Ψp for some p > 1.

If ⊥ ∈ Ψp then ψ = Ψ0 is unsatisfiable.
(Leave aside whether the sequence is bound to terminate. Yes, it is bound to terminate!)

Proof.
Every time resolution is applied to some Ψi, we have:

(C ∨ p) (D ∨ ¬p)

(C ∨ D)

Resolvent (C ∨ D) is satisfied by any truth-value assignment satisfying C or D.
Hence, if Ψi is satisfiable, then so is Ψi+1 = Ψi ∪ {(C ∨ D)}.
Hence, resolution preserves satisfiability at every step from Ψ0 to Ψp.
Hence, if Ψp is unsatisfiable, then so is Ψ0.
But ⊥ ∈ Ψp means Ψp is unsatisfiable, implying desired conclusion.

Back to Resolution: how to use it

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 33 of 38

Resolution Rule: proof of soundness

Theorem
Let ψ be a CNF, ψ = {C1, . . . ,Cn}, where every clause Ci is a finite disjunct of literals.
Pose Ψ0 = ψ and apply resolution repeatedly to Ψ0 to obtain the sequence of CNF’s:

Ψ0 Ψ1 Ψ2 · · · Ψp for some p > 1.

If ⊥ ∈ Ψp then ψ = Ψ0 is unsatisfiable.
(Leave aside whether the sequence is bound to terminate. Yes, it is bound to terminate!)

Proof.
Every time resolution is applied to some Ψi, we have:

(C ∨ p) (D ∨ ¬p)

(C ∨ D)

Resolvent (C ∨ D) is satisfied by any truth-value assignment satisfying C or D.
Hence, if Ψi is satisfiable, then so is Ψi+1 = Ψi ∪ {(C ∨ D)}.
Hence, resolution preserves satisfiability at every step from Ψ0 to Ψp.
Hence, if Ψp is unsatisfiable, then so is Ψ0.
But ⊥ ∈ Ψp means Ψp is unsatisfiable, implying desired conclusion.

Back to Resolution: how to use it

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 34 of 38

Resolution Rule: proof of refutation-completeness

Theorem
Let ψ be a CNF, ψ = {C1, . . . ,Cn}, where every clause Ci is a finite disjunct of literals.
Pose Ψ0 = ψ and apply resolution repeatedly to Ψ0 to obtain the sequence of CNF’s:

Ψ0 Ψ1 Ψ2 · · · Ψp for some p > 1.

If ψ = Ψ0 is unsatisfiable, then ⊥ ∈ Ψp.
(Leave aside whether the sequence is bound to terminate. Yes, it is bound to terminate!)

Proof.
The proof is by induction and the question is what to do the induction on. Define the
number of excess literals in a clause C:

excess(C) :=

{
0 if |C| = 0 or 1,

|C| − 1 if |C| > 2,

where |C| is the number of literals in C. For a CNF ψ = {C1, . . . ,Cn}, define
excess(ψ) = excess(C1) + · · ·+ excess(Cn). An appropriate induction is on the
measure excess(ψ). All details omitted.

Back to Resolution: how to use it

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 35 of 38

Resolution Rule: proof of refutation-completeness

Theorem
Let ψ be a CNF, ψ = {C1, . . . ,Cn}, where every clause Ci is a finite disjunct of literals.
Pose Ψ0 = ψ and apply resolution repeatedly to Ψ0 to obtain the sequence of CNF’s:

Ψ0 Ψ1 Ψ2 · · · Ψp for some p > 1.

If ψ = Ψ0 is unsatisfiable, then ⊥ ∈ Ψp.
(Leave aside whether the sequence is bound to terminate. Yes, it is bound to terminate!)

Proof.
The proof is by induction and the question is what to do the induction on. Define the
number of excess literals in a clause C:

excess(C) :=

{
0 if |C| = 0 or 1,

|C| − 1 if |C| > 2,

where |C| is the number of literals in C. For a CNF ψ = {C1, . . . ,Cn}, define
excess(ψ) = excess(C1) + · · ·+ excess(Cn). An appropriate induction is on the
measure excess(ψ). All details omitted.

Back to Resolution: how to use it

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 36 of 38

Exercise
Provide the details of the induction in Refutation-Completeness Proof .

Exercise
Search the Web for an (infinite) family of propositional wff’s on which the resolution
method outperforms the tableaux method (as presented in Handout 10). Run the two
methods on the smallest member of this set to show that the tableaux method takes
more steps to terminate.

Hint: Consider the wff Ψ, which is in CNF, in the last exercise in Handout 10.

Exercise
Provide a detailed comparison of the tableaux method and the resolution method.

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 37 of 38

(THIS PAGE INTENTIONALLY LEFT BLANK)

Assaf Kfoury, CS 511, Fall 2018, Handout 11 page 38 of 38

