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background and reading material

I The last chapter, Chapter 6, in the book [LCS] is entirely devoted to BDD’s.
You should read at least Sections 6.1 and 6.2 .

Sections 6.3 and 6.4 go into topics that will not be covered this semester
(symbolic model-checking and mu-calculus), but still cover material
that will deepen your knowledge of BDD’s, if you can handle them.

My presentation is somewhat different from that in [LCS], especially in
regard to explaining connections between propositional WFF’s and BDD’s.

I Although there is rather little on BDD’s, especially from a persepctive
stressing formal methods and formal modeling in textooks,1 there is a lot
on BDD’s that you can find by searching the Web.

For a good expository account of BDD’s and their history, click here .

1
There is a book by Rolf Drechsler and Bernd Becker, Binary Decision Diagrams, Theory and Practice , 1998, written from the

perspective of people working on VLSI (Very Large Scale Integration) and the design of electronic circuits. From an algorithmic

perspective, there is a very nice section (Section 7.1.4) in Donald Knuth, The Art of Computer Programming, Vol. 4 , 2008.
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canonical representations of WFF’s of propositional logic?

I given a WFF ϕ of propositional logic, is there a canonical representation
of ϕ, call it ϕ?, satisfying the following condition:

for every WFF ψ of propositional logic,
ϕ and ψ are equivalent iff ϕ? = ψ? ??

(we write ϕ? = ψ? to mean ϕ? and ψ? are syntactically the same.)

I if yes, hopefully ϕ? and ψ? are obtained by “easy” syntactic
transformation, allowing for a “quick” syntactic test ϕ? = ψ?

I perhaps the CNF’s of propositional WFF’s can be the desired canonical
representations???

I or perhaps the DNF’s of propositional WFF’s can be the desired canonical
representations???
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bad news: CNF’s and DNF’s are not canonical representations

I Two WFF’s of propositional logic:

ϕ , x ∧ (y ∨ z)

ψ , x ∧ (x ∨ y) ∧ (y ∨ z)

I ϕ and ψ are both in CNF

I ϕ and ψ are equivalent

I yet, ϕ and ψ are syntactically different

I Conclusion:
CNF’s are not canonical representations of propositional WFF’s.

Same conclusion for DNF’s. 2

2
See comments in Handout 06 on what is canonical.
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truth-table representation of propositional WFF’s is canonical

I Canonicity of Truth Tables: For arbitrary propositional WFF’s ϕ1 and ϕ2,
ϕ1 and ϕ2 are equivalent iff table(ϕ1) = table(ϕ2).3

The equivalence of ϕ1 and ϕ2 is therefore reduced

to a syntactic test of equality between table(ϕ1) and table(ϕ2) .

I Example: for the WFF’s ϕ = x ∧ (y ∨ z) and ψ = x ∧ (x ∨ y) ∧ (y ∨ z) on
slide 5, table(ϕ) = table(ψ) is the following truth-table:

x y z ϕ

F F F F
F F T F
F T F F
F T T F
T F F F
T F T T
T T F T
T T T T

x y z ψ

F F F F
F F T F
F T F F
F T T F
T F F F
T F T T
T T F T
T T T T

I But canonicity of truth tables comes with a heavy price, which is . . .

3
We limit table(ϕ) to the columns corresponding to the variables in ϕ together with the last column in the truth-table of ϕ.
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in search of a canonical representation of propositional WFF’s
In the next few slides, we show:

I how to transform an arbitrary propositional WFF ϕ to a

binary decision tree (BDT) representing ϕ,

I how to translate a binary decision tree (BDT) T back to a

propositional WFF that T represents,

I how to transform a binary decision tree (BDT) T to an equivalent

binary decision diagram (BDD) D.

I how to transform a binary decision diagram (BDD) D to an equivalent

reduced ordered binary decision diagram (OBDD) D′.
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from a propositional WFF to a binary decision tree (BDT)
for propositional WFF ϕ with atoms in X = {x1, . . . , xn}, two basic approaches:

(A) substitute ⊥ (i.e., false) and > (i.e., true) for the atoms in X in some order,
delaying simplification until all atoms are replaced.

(B) substitute ⊥ (i.e., false) and > (i.e., true) for the atoms in X in some order,
without delaying simplification until all atoms are replaced.

I method (A) produces a full binary tree with exactly (2n − 1) internal
nodes and 2n leaf nodes.

I method (B) produces a binary tree with at most (2n − 1) internal nodes
and 2n leaf nodes.

I simplification in both methods based on, for arbitrary WFF ψ:

¬¬ψ ≡ ψ ψ ∨ ¬ψ ≡ > ψ ∧ ¬ψ ≡ ⊥
> ∨ ψ ≡ > ⊥ ∨ ψ ≡ ψ

> ∧ ψ ≡ ψ ⊥ ∧ ψ ≡ ⊥

as well as (ψ → ψ′) ≡ (¬ψ ∨ ψ′), commutativity of “∨” and “∧”, etc.
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from a propositional WFF to a binary decision tree (BDT)

I Example: applying method (A) to WFF ϕ , (q→ p) ∧ r → (p↔ r) ∧ q:

(q→ p) ∧ r → (p↔ r) ∧ q

(q→ ⊥) ∧ r → (⊥ ↔ r) ∧ q (q→ >) ∧ r → (> ↔ r) ∧ q

(⊥ → ⊥) ∧ r → (⊥ ↔ r) ∧ ⊥ (> → ⊥) ∧ r → (⊥ ↔ r) ∧ > (⊥ → >) ∧ r → (> ↔ r) ∧ ⊥ (> → >) ∧ r → (> ↔ r) ∧ >

(⊥ → ⊥) ∧ ⊥ → (⊥ ↔ ⊥) ∧ ⊥ (⊥ → ⊥) ∧ > → (⊥ ↔ >) ∧ ⊥ . . . . . . . . . . . . . . . . . .

> ⊥ > > > ⊥ > >

p := ⊥ p := >

q := ⊥ q := > q := ⊥ q := >

r := ⊥ r := > r := ⊥ r := > r := ⊥ r := > r := ⊥ r := >

The preceding is a binary tree, labelled in a particular way, but NOT yet a BDT!
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from a propositional WFF to a binary decision tree (BDT)

I Example: applying method (B) to WFF ϕ , (q→ p) ∧ r → (p↔ r) ∧ q:

(q→ p) ∧ r → (p↔ r) ∧ q

¬q ∧ r → ¬r ∧ q r → (r ∧ q)

¬r > ¬r >

> ⊥ > ⊥

p := ⊥ p := >

q := ⊥ q := > q := ⊥ q := >

r := ⊥ r := > r := ⊥ r := >

The preceding is a binary tree, labelled in a particular way, but NOT yet a BDT!
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from a propositional WFF to a binary decision tree (BDT)
Remarks:

I for the same WFF ϕ , (q→ p) ∧ r → (p↔ r) ∧ q in slide 11, method
(B) produces different trees for different orderings of the atoms {p, q, r}.

Exercise: apply method (B) to ϕ using the ordering: (1) r, (2) q, and (3) p.

I the trees returned by methods (A) and (B) give the same complete
semantic information about the input WFF ϕ.

for the input ϕ , (q→ p) ∧ r → (p↔ r) ∧ q in slides 10 and 11:

ϕ is not a tautology/valid WFF – some leaf nodes are ⊥
ϕ is not unsatisfiable/contradictory WFF – some leaf nodes are >
ϕ is contingent WFF :

I ϕ is satisfied by any valuation of {p, q, r}
induced by a path from the root to a leaf node >

I ϕ is falsified by any valuation of {p, q, r}
induced by a path from the root to a leaf node ⊥
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from a propositional WFF to a binary decision tree (BDT)

I one more step to transform the trees in slides 10 and 11 returned by
methods (A) and (B) into what are called binary decision trees (BDT’s) :

p

q q

r r r r

1 0 1 1 1 0 1 1

p

q q

r 1 r 1

1 0 1 0

Starting from the same WFF, we obtained two different BDT’s! And the shape of the

BDT on the right, obtained using method (B), changes with the orderings of {p, q, r}!!
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from a binary decision tree (BDT) to a propositional WFF

I one approach is to write a DNF (disjunction of conjuncts) where each
conjunct represents the truth assignment along a path from the root of the
BDT to a leaf node labelled “1”.

Example: We can write the DNF’s ϕA and ϕB, below, for the BDT’s on the left
and on the right in slide 13, respectively:

ϕA , (¬p ∧ ¬q ∧ ¬r) ∨ (¬p ∧ q ∧ ¬r) ∨ (¬p ∧ q ∧ r) ∨ (p ∧ ¬q ∧ ¬r) ∨ (p ∧ q ∧ ¬r) ∨ (p ∧ q ∧ r)

ϕB , (¬p ∧ ¬q ∧ ¬r) ∨ (¬p ∧ q) ∨ (p ∧ ¬q ∧ ¬r) ∨ (p ∧ q)

there are 6 conjuncts in ϕA and 4 conjuncts in ϕB, corresponding to the number
of paths in each of the two BDT’s leading to a leaf node “1”.
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from a binary decision tree (BDT) to a propositional WFF

I another approach is to write a WFF using the logical connective
if-then-else.

Example: For the BDT on the right in slide 13 (leaving the BDT on the left in
slide 13 to you), we can write:

ψB , if p then if q then >
else if r then ⊥

else >
else if q then >

else if r then ⊥
else >

Exercise: the logical connective if-then-else is not directly available in the
syntax of propositional logic. Show how to define if-then-else using the
standard connectives in {→,∧,∨,¬}.
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binary decision trees (BDT), binary decision diagrams (BDD)

I definition of BDT is in first paragraph of Sect 6.1.2 [LCS, page 361]

I definition of BDD in Definition 6.5 [LCS, page 364]

I BDT’s are a special case of BDD’s

I BDD’s allow three optimizations {C1,C2,C3} [LCS, page 363],
which are not allowed in BDT’s
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binary decision trees (BDT’s) vs.
reduced ordered binary decision diagrams (ROBDD’s)

I consider the propositional WFF ϕ
(written as a Boolean function of 6 variables):

ϕ , (x1 + x2) · (x3 + x4) · (x5 + x6)

(ϕ as a function, we follow the convention: “+” instead of “∨” and “·” instead of “∧”)

I if we include all propositional variables along all paths from the root, then
the corresponding BDT(ϕ) has 26 = 64 leaf nodes and 26 − 1 = 63
internal nodes (just too large to draw on this slide!!)

I if BDT(ϕ) is produced using method (A) in slide 9, then its size is not
affected by the ordering of the variables {x1, x2, x3, x4, x5, x6}, it is the
same regardless of the ordering

I relative to a fixed ordering of the variables, e.g.,
x1 < x2 < x3 < x4 < x5 < x6, starting from the root,
BDT(ϕ) is unique (as an unordered binary tree)
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binary decision trees (BDT’s) vs.
reduced ordered binary decision diagrams (ROBDD’s)

I applying repeatedly reduction rules {C1,C2,C3} to BDT(ϕ) on slide 17:
C1: merge leaf nodes into two nodes “0” and “1”
C2: remove redundant nodes
C3: merge isomorphic sub-dags
we obtain a ROBDD w.r.t. to the ordering x1 < x2 < x3 < x4 < x5 < x6:

0 1

x3

x1

x4

x5

x6

x2
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binary decision trees (BDT’s) vs.
reduced ordered binary decision diagrams (ROBDD’s)

I however, w.r.t. the (different) ordering x1 < x3 < x5 < x2 < x4 < x6,
applying the 3 reduction rules repeatedly produces a much larger ROBDD:

0 1

x1

x6

x2x2x2x2

x5
x5 x5 x5

x3
x3

x4 x4
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another example: binary decision trees (BDT’s) vs.
reduced ordered binary decision diagrams (ROBDD’s)

I consider the so-called two-bit comparator:

ψ , (x1 ↔ y1) ∧ (x2 ↔ y2)

and the corresponding BDT(ψ), which has 15 internal nodes/decision
points and 16 leaf nodes:

x1

y1 y1

x2 x2 x2 x2

y2 y2 y2 y2 y2 y2 y2 y2

1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1

(I use method (A) from slide 9 to obtain BDT(ψ) from ψ above.)
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another example: binary decision trees (BDT’s) vs.
reduced ordered binary decision diagrams (ROBDD’s)

I applying repeatedly reduction rules {C1,C2,C3} to BDT(ψ) on slide 21,
we obtain a ROBDD w.r.t. to the ordering x1 < y1 < x2 < y2, with 6
internal nodes and 2 leaf nodes:

x1

y1 y1

x2

y2 y2

1 0
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another example: binary decision trees (BDT’s) vs.
reduced ordered binary decision diagrams (ROBDD’s)

I however, if we use the ordering x1 < x2 < y1 < y2 for the BDT of the
two-bit comparator ψ, and apply the 3 reduction rules repeatedly, we
obtain a larger ROBDD, with 9 internal nodes and 2 leaf nodes:

x1

x2 x2

y1 y1 y1 y1

y2 y2

1 0
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facts about ROBDD’s – some bad news!

I The n-bit comparator is the following WFF:

ψn , (x1 ↔ y1) ∧ (x2 ↔ y2) ∧ · · · ∧ (xn ↔ yn)

I Fact: If we use the ordering x1 < y1 < · · · < xn < yn, the number of
nodes in ROBDD(ψn) is 3 · n + 2 (linear in n) .

I Fact: If we use the ordering x1 < · · · < xn < y1 < · · · < yn, the
number of nodes in ROBDD(ψn) is 3 · 2n − 1 (exponential in n) .

Exercise: Prove two preceding facts (easy!) .

I Fact: There are propositional WFF’s ϕ whose ROBDD’s have sizes
exponential in

∣∣ϕ∣∣ for all orderings of variables (bad news!) .

Exercise: Prove this fact (not easy!) .

I Fact: Finding an ordering of the variables in an arbitrary ϕ so that the size
of ROBDD(ϕ) is minimized is an NP-hard problem (more bad news!) .

Exercise: Search the Web for a paper proving this fact.
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facts about ROBDD’s – some good news!

I Fact: ROBDD’s are canonical.

Specifically, they are canonical relative to a fixed ordering of the variables
(imposing the same ordering on variables in all paths from root to
terminals), in which case ROBDD(ϕ) is a uniquely defined dag.

I Fact: Relative to the same ordering of variables along all paths from the
root to a terminal, the transformation from BDT(ϕ) to ROBDD(ϕ) can be
carried out in linear time.
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facts about ROBDD’s – still some good news!

Exploiting canonicity of ROBDD’s.

I Fact: checking equivalence of ϕ and ψ is the same as checking if
ROBDD(ϕ) and ROBDD(ψ) are equal, w.r.t. same ordering of variables.

I Fact: tautological validity of ϕ can be determined by checking if
ROBDD(ϕ) is equal to the ROBDD with a single terminal label “1”

I Fact: unsatisfiability of ϕ can be determined by checking if ROBDD(ϕ)
is equal to the ROBDD with a single terminal label “0”
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facts about ROBDD’s – more good news!

Exploiting canonicity of ROBDD’s.

I Fact: satisfiability of ϕ can be determined by first checking if ROBDD(ϕ)
is equal to the ROBDD with a single terminal label “0”, in which case ϕ is
unsatisfiable, otherwise . . ..

Exercise: Fill in the missing part in preceding statement (easy!) .

Exercise: determine if ϕ is satisfiable and construct a satisfying
assignment (more interesting!) .

Exercise: determine if ϕ is satisfiable and count the number of satisfying
assignments (still more interesting!) .

I Fact: implication, i.e., ϕ implies ψ, can be determined by checking if
ROBDD(ϕ ∧ ¬ψ) is equal to the ROBDD with a single terminal label “0”

Exercise: Prove this fact (easy!) .
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