CS 511, Fall 2018, Handout 13 Binary Decision Diagrams (BDD's)

Assaf Kfoury

September 25, 2018

Assaf Kfoury, CS 511, Fall 2018, Handout 13

background and reading material

The last chapter, Chapter 6, in the book [LCS] is entirely devoted to BDD's. You should read at least Sections 6.1 and 6.2.

Sections 6.3 and 6.4 go into topics that will not be covered this semester (*symbolic model-checking* and *mu-calculus*), but still cover material that will deepen your knowledge of BDD's, if you can handle them.

My presentation is somewhat different from that in [LCS], especially in regard to explaining connections between propositional WFF's and BDD's.

Although there is rather little on BDD's, especially from a persepctive stressing formal methods and formal modeling in textooks,¹ there is a lot on BDD's that you can find by searching the Web.

For a good expository account of BDD's and their history, click here.

¹ There is a book by Rolf Drechsler and Bernd Becker, *Binary Decision Diagrams, Theory and Practice*, 1998, written from the perspective of people working on VLSI (Very Large Scale Integration) and the design of electronic circuits. From an algorithmic perspective, there is a very nice section (Section 7.1.4) in Donald Knuth, *The Art of Computer Programming, Vol. 4*, 2008.

Assaf Kfoury, CS 511, Fall 2018, Handout 13

canonical representations of WFF's of propositional logic?

given a WFF φ of propositional logic, is there a canonical representation of φ, call it φ*, satisfying the following condition:

```
for every WFF \psi of propositional logic, \varphi and \psi are equivalent iff \varphi^{\star} = \psi^{\star} ??
```

(we write $\varphi^{\star} = \psi^{\star}$ to mean φ^{\star} and ψ^{\star} are syntactically the same.)

canonical representations of WFF's of propositional logic?

given a WFF φ of propositional logic, is there a canonical representation of φ, call it φ*, satisfying the following condition:

```
for every WFF \psi of propositional logic,
\varphi and \psi are equivalent iff \varphi^* = \psi^* ??
```

(we write $\varphi^{\star} = \psi^{\star}$ to mean φ^{\star} and ψ^{\star} are syntactically the same.)

- If yes, hopefully φ^{*} and ψ^{*} are obtained by "easy" syntactic transformation, allowing for a "quick" syntactic test φ^{*} = ψ^{*}
- perhaps the CNF's of propositional WFF's can be the desired canonical representations???
- or perhaps the DNF's of propositional WFF's can be the desired canonical representations???

Assaf Kfoury, CS 511, Fall 2018, Handout 13

bad news: CNF's and DNF's are not canonical representations

Two WFF's of propositional logic:

 $\varphi \triangleq x \land (y \lor z)$ $\psi \triangleq x \land (x \lor y) \land (y \lor z)$

 $\blacktriangleright \ \varphi$ and ψ are both in CNF

 $\blacktriangleright \varphi$ and ψ are equivalent

• yet, φ and ψ are syntactically different

Conclusion:

CNF's are not canonical representations of propositional WFF's.

Same conclusion for DNF's.²

²See comments in Handout 06 on what is *canonical*.

Assaf Kfoury, CS 511, Fall 2018, Handout 13

truth-table representation of propositional WFF's is canonical

• **Canonicity of Truth Tables**: For arbitrary propositional WFF's φ_1 and φ_2 , φ_1 and φ_2 are equivalent iff **table** $(\varphi_1) =$ **table** (φ_2) .³

The equivalence of φ_1 and φ_2 is therefore reduced

to a syntactic test of equality between $table(\varphi_1)$ and $table(\varphi_2)$.

³We limit $table(\varphi)$ to the columns corresponding to the variables in φ together with the last column in the truth-table of φ .

truth-table representation of propositional WFF's is canonical

• **Canonicity of Truth Tables**: For arbitrary propositional WFF's φ_1 and φ_2 , φ_1 and φ_2 are equivalent iff **table** $(\varphi_1) =$ **table** (φ_2) .³

The equivalence of φ_1 and φ_2 is therefore reduced

to a syntactic test of equality between ${\bf table}(\varphi_1)$ and ${\bf table}(\varphi_2)$.

Example: for the WFF's $\varphi = x \land (y \lor z)$ and $\psi = x \land (x \lor y) \land (y \lor z)$ on slide 5, table(φ) = table(ψ) is the following truth-table:

x	у	z	φ	x	y y	z	ψ
		F		F		F	
		Т		F		Т	
		F		F		F	
		Т		F		Т	
Т	F	F	F	Т	F	F	F
		Т	1	Т	F	Т	Т
		F		Т		F	
Т	Т	Т	Т	Т	Т	Т	Т

But canonicity of truth tables comes with a heavy price, which is

³We limit table (φ) to the columns corresponding to the variables in φ together with the last column in the truth-table of φ .

in search of a canonical representation of propositional WFF's

In the next few slides, we show:

- how to transform an arbitrary propositional WFF φ to a binary decision tree (BDT) representing φ,
- how to translate a binary decision tree (BDT) T back to a propositional WFF that T represents,
- how to transform a binary decision tree (BDT) T to an equivalent binary decision diagram (BDD) D.
- how to transform a binary decision diagram (BDD) D to an equivalent reduced ordered binary decision diagram (OBDD) D'.

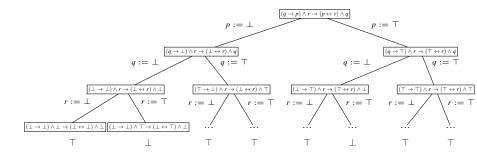
for propositional WFF φ with atoms in $X = \{x_1, \dots, x_n\}$, two basic approaches:

- (A) substitute \perp (*i.e.*, *false*) and \top (*i.e.*, *true*) for the atoms in *X* in some order, delaying simplification until all atoms are replaced.
- (B) substitute \perp (*i.e.*, *false*) and \top (*i.e.*, *true*) for the atoms in *X* in some order, without delaying simplification until all atoms are replaced.
 - method (A) produces a full binary tree with exactly $(2^n 1)$ internal nodes and 2^n leaf nodes.
 - method (B) produces a binary tree with at most $(2^n 1)$ internal nodes and 2^n leaf nodes.
 - simplification in both methods based on, for arbitrary WFF ψ :

$$\neg \neg \psi \equiv \psi \qquad \psi \lor \neg \psi \equiv \top \qquad \psi \land \neg \psi \equiv \bot$$
$$\top \lor \psi \equiv \top \qquad \bot \lor \psi \equiv \psi$$
$$\top \land \psi \equiv \psi \qquad \bot \land \psi \equiv \bot$$

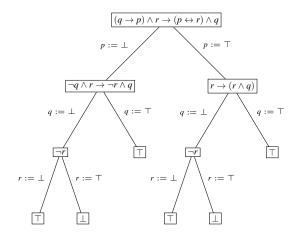
as well as $(\psi \to \psi') \equiv (\neg \psi \lor \psi')$, commutativity of " \lor " and " \land ", etc.

Example: applying method (A) to WFF $\varphi \triangleq (q \rightarrow p) \land r \rightarrow (p \leftrightarrow r) \land q$:



The preceding is a binary tree, labelled in a particular way, but NOT yet a BDT!

Example: applying method (B) to WFF $\varphi \triangleq (q \rightarrow p) \land r \rightarrow (p \leftrightarrow r) \land q$:



The preceding is a binary tree, labelled in a particular way, but NOT yet a BDT!

Remarks:

for the same WFF φ ≜ (q → p) ∧ r → (p ↔ r) ∧ q in slide 11, method
 (B) produces different trees for different orderings of the atoms {p,q,r}.

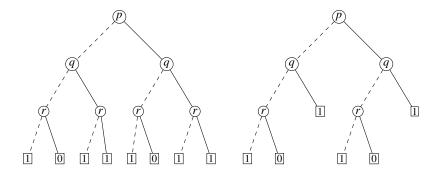
Exercise: apply method (B) to φ using the ordering: (1) r, (2) q, and (3) p.

the trees returned by methods (A) and (B) give the same complete semantic information about the input WFF φ.

for the input $\varphi \triangleq (q \to p) \land r \to (p \leftrightarrow r) \land q$ in slides 10 and 11:

- φ is **not** a tautology/valid WFF some leaf nodes are \perp
- φ is **not** unsatisfiable/contradictory WFF some leaf nodes are \top
- φ is contingent WFF :
 - φ is satisfied by any valuation of {p, q, r} induced by a path from the root to a leaf node ⊤
 - φ is falsified by any valuation of {p, q, r} induced by a path from the root to a leaf node ⊥

one more step to transform the trees in slides 10 and 11 returned by methods (A) and (B) into what are called binary decision trees (BDT's) :



Starting from the same WFF, we obtained two different BDT's! And the shape of the BDT on the right, obtained using method (B), changes with the orderings of $\{p, q, r\}$!!

from a binary decision tree (BDT) to a propositional WFF

one approach is to write a DNF (disjunction of conjuncts) where each conjunct represents the truth assignment along a path from the root of the BDT to a leaf node labelled "1".

Example: We can write the DNF's φ_A and φ_B , below, for the BDT's on the left and on the right in slide 13, respectively:

$$\begin{split} \varphi_A &\triangleq (\neg p \land \neg q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land \neg r) \lor (p \land q \land \neg r) \lor (p \land q \land \neg r) \lor (p \land q \land r) \\ \varphi_B &\triangleq (\neg p \land \neg q \land \neg r) \lor (\neg p \land q) \lor (p \land \neg q \land \neg r) \lor (p \land q) \end{split}$$

there are 6 conjuncts in φ_A and 4 conjuncts in φ_B , corresponding to the number of paths in each of the two BDT's leading to a leaf node "1".

from a binary decision tree (BDT) to a propositional WFF

another approach is to write a WFF using the logical connective if-then-else.

Example: For the BDT on the right in slide 13 (leaving the BDT on the left in slide 13 to you), we can write:

```
\psi_B \triangleq \text{ if } p \text{ then if } q \text{ then } 	operator \ else 	ext{ if } r \text{ then } ot \ else 	operator \ else 	operator \ else 	ext{ if } r \text{ then } ot \ else 	operator \ else 	ext{ if } r \text{ then } ot \ else 	operator \ else 	ext{ if } r \text{ then } ot \ else 	operator \ el
```

Exercise: the logical connective **if-then-else** is not directly available in the syntax of propositional logic. Show how to define **if-then-else** using the standard connectives in $\{\rightarrow, \land, \lor, \neg\}$.

Assaf Kfoury, CS 511, Fall 2018, Handout 13

binary decision trees (BDT), binary decision diagrams (BDD)

definition of BDT is in first paragraph of Sect 6.1.2 [LCS, page 361]

definition of BDD in Definition 6.5 [LCS, page 364]

BDT's are a special case of BDD's

BDD's allow three optimizations {C1, C2, C3} [LCS, page 363], which are not allowed in BDT's

reduced ordered binary decision diagrams (ROBDD's)

 consider the propositional WFF φ (written as a Boolean function of 6 variables):

 $\varphi \triangleq (x_1 + x_2) \cdot (x_3 + x_4) \cdot (x_5 + x_6)$

(φ as a function, we follow the convention: "+" instead of " \lor " and " \cdot " instead of " \land ")

- ▶ if we include all propositional variables along all paths from the root, then the corresponding BDT(φ) has 2⁶ = 64 leaf nodes and 2⁶ − 1 = 63 internal nodes (just too large to draw on this slide!!)
- If BDT(φ) is produced using method (A) in slide 9, then its size is not affected by the ordering of the variables {x1, x2, x3, x4, x5, x6}, it is the same regardless of the ordering

relative to a fixed ordering of the variables, *e.g.*,
 x₁ < x₂ < x₃ < x₄ < x₅ < x₆, starting from the root,
 BDT(φ) is unique (as an unordered binary tree)

reduced ordered binary decision diagrams (ROBDD's)

- applying repeatedly reduction rules $\{C1, C2, C3\}$ to $BDT(\varphi)$ on slide 17:
 - C1: merge leaf nodes into two nodes "0" and "1"
 - C2: remove redundant nodes
 - C3: merge isomorphic sub-dags

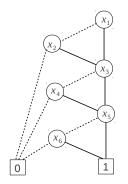
we obtain a ROBDD w.r.t. to the ordering $x_1 < x_2 < x_3 < x_4 < x_5 < x_6$:

reduced ordered binary decision diagrams (ROBDD's)

• applying repeatedly reduction rules $\{C1, C2, C3\}$ to $BDT(\varphi)$ on slide 17:

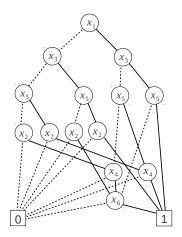
- C1: merge leaf nodes into two nodes "0" and "1"
- C2: remove redundant nodes
- C3: merge isomorphic sub-dags

we obtain a ROBDD w.r.t. to the ordering $x_1 < x_2 < x_3 < x_4 < x_5 < x_6$:



reduced ordered binary decision diagrams (ROBDD's)

however, w.r.t. the (different) ordering $x_1 < x_3 < x_5 < x_2 < x_4 < x_6$, applying the 3 reduction rules repeatedly produces a much larger ROBDD:

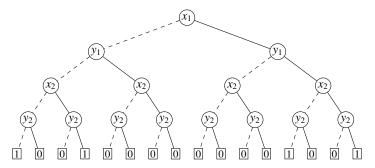


another example: binary decision trees (BDT's) vs. reduced ordered binary decision diagrams (ROBDD's)

consider the so-called two-bit comparator:

$$\psi \triangleq (x_1 \leftrightarrow y_1) \land (x_2 \leftrightarrow y_2)$$

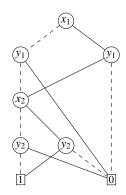
and the corresponding ${\rm BDT}(\psi),$ which has 15 internal nodes/decision points and 16 leaf nodes:



(I use method (A) from slide 9 to obtain **BDT**(ψ) from ψ above.)

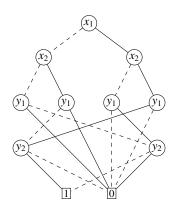
another example: binary decision trees (BDT's) vs. reduced ordered binary decision diagrams (ROBDD's)

applying repeatedly reduction rules {C1, C2, C3} to BDT(ψ) on slide 21, we obtain a ROBDD w.r.t. to the ordering x₁ < y₁ < x₂ < y₂, with 6 internal nodes and 2 leaf nodes:



another example: binary decision trees (BDT's) vs. reduced ordered binary decision diagrams (ROBDD's)

• however, if we use the ordering $x_1 < x_2 < y_1 < y_2$ for the BDT of the two-bit comparator ψ , and apply the 3 reduction rules repeatedly, we obtain a larger ROBDD, with 9 internal nodes and 2 leaf nodes:



facts about ROBDD's - some bad news!

The *n*-bit comparator is the following WFF:

 $\psi_n \triangleq (x_1 \leftrightarrow y_1) \land (x_2 \leftrightarrow y_2) \land \dots \land (x_n \leftrightarrow y_n)$

- **Fact**: If we use the ordering $x_1 < y_1 < \cdots < x_n < y_n$, the number of nodes in **ROBDD** (ψ_n) is $3 \cdot n + 2$ (linear in *n*).
- Fact: If we use the ordering $x_1 < \cdots < x_n < y_1 < \cdots < y_n$, the number of nodes in **ROBDD** (ψ_n) is $3 \cdot 2^n 1$ (exponential in *n*).

Exercise: Prove two preceding facts (easy!).

• **Fact**: There are propositional WFF's φ whose ROBDD's have sizes exponential in $|\varphi|$ for all orderings of variables (bad news!).

Exercise: Prove this fact (not easy!).

• <u>Fact</u>: Finding an ordering of the variables in an arbitrary φ so that the size of **ROBDD**(φ) is minimized is an NP-hard problem (more bad news!).

Exercise: Search the Web for a paper proving this fact.

facts about ROBDD's - some good news!

Fact: ROBDD's are canonical.

Specifically, they are **canonical** relative to a fixed ordering of the variables (imposing the same ordering on variables in all paths from root to terminals), in which case **ROBDD**(φ) is a uniquely defined dag.

Fact: Relative to the same ordering of variables along all paths from the root to a terminal, the transformation from BDT(φ) to ROBDD(φ) can be carried out in linear time.

facts about ROBDD's - still some good news!

Exploiting canonicity of ROBDD's.

- Fact: checking equivalence of φ and ψ is the same as checking if ROBDD(φ) and ROBDD(ψ) are equal, w.r.t. same ordering of variables.
- Fact: tautological validity of φ can be determined by checking if ROBDD(φ) is equal to the ROBDD with a single terminal label "1"
- Fact: unsatisfiability of φ can be determined by checking if ROBDD(φ) is equal to the ROBDD with a single terminal label "0"

facts about ROBDD's - more good news!

Exploiting canonicity of ROBDD's.

Fact: satisfiability of φ can be determined by <u>first</u> checking if ROBDD(φ) is equal to the ROBDD with a single terminal label "0", in which case φ is unsatisfiable, otherwise

Exercise: Fill in the missing part in preceding statement (easy!).

Exercise: determine if φ is satisfiable **and** construct a satisfying assignment (more interesting!).

Exercise: determine if φ is satisfiable **and** count the number of satisfying assignments (still more interesting!).

Fact: implication, *i.e.*, φ implies ψ, can be determined by checking if ROBDD(φ ∧ ¬ψ) is equal to the ROBDD with a single terminal label "0"

Exercise: Prove this fact (easy!) .

(THIS PAGE INTENTIONALLY LEFT BLANK)