CS 511, Fall 2018, Handout 14 Quantified Boolean Formulas (QBF's)

Assaf Kfoury

September 26, 2018 (modified: October 02, 2018)

BNF definition of QBF's:

$$\varphi ::= \mathbf{F} \mid \mathbf{T} \mid x \mid (\neg \varphi) \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid (\varphi \to \varphi) \mid$$

$$(\forall x \varphi) \mid (\exists x \varphi)$$

where x ranges over propositional variables. 1

 $^{^{1}}$ We do not say *propositional atoms* in order to emphasize that x can be quantified.

BNF definition of QBF's:

$$\varphi ::= \mathbf{F} \mid \mathbf{T} \mid x \mid (\neg \varphi) \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid (\varphi \to \varphi) \mid$$

$$(\forall x \varphi) \mid (\exists x \varphi)$$

where x ranges over propositional variables. 1

- ► free and bound variables:
 - **a** variable x may occur **free** or **bound** in a WFF φ
 - if x is bound in φ , then there are **zero** or more **bound** occurrences of x and **one** or more **binding** occurrences of x in φ
 - **a binding** occurrence of x is of the form " $\forall x$ " or " $\exists x$ "
 - if a binding occurrence of x occurs as $(\mathbf{Q} x \varphi)$ where $\mathbf{Q} \in \{\forall, \exists\}$, then φ is the **scope** of the binding occurrence

We do not say *propositional atoms* in order to emphasize that *x* can be quantified.

ightharpoonup scopes of two binding occurrences " $\mathbf{Q} x$ " and " $\mathbf{Q}' x'$ " may be

disjoint:
$$\cdots$$
 (Q x \cdots \cdots) \cdots (Q $'x'$ \cdots \cdots) \cdots or nested: \cdots (Q x \cdots (Q $'x'$ \cdots \cdots) \cdots

but cannot overlap

> scopes of two binding occurrences " $\mathbf{Q} x$ " and " $\mathbf{Q}' x'$ " may be

disjoint:
$$\cdots$$
 ($\mathbf{Q}x \cdots \cdots$) \cdots ($\mathbf{Q}'x' \cdots \cdots$) \cdots or nested: \cdots ($\mathbf{Q}x \cdots \cdots \cdots \cdots$) \cdots

but cannot overlap

We define a function FV() which collects all the variables occurring free in a WFF. Formally:

$$\mathsf{FV}(\varphi) = \begin{cases} \varnothing & \text{if } \varphi = \mathbf{F} \text{ or } \mathbf{T} \\ \{x\} & \text{if } \varphi = x \\ \\ \mathsf{FV}(\varphi') & \text{if } \varphi = \neg \varphi' \\ \\ \mathsf{FV}(\varphi_1) \cup \mathsf{FV}(\varphi_2) & \text{if } \varphi = (\varphi_1 \star \varphi_2) \text{ and } \star \in \{\land, \lor, \rightarrow\} \\ \\ \mathsf{FV}(\varphi') - \{x\} & \text{if } \varphi = (\mathbf{Q}x \; \varphi') \text{ and } \mathbf{Q} \in \{\forall, \exists\} \end{cases}$$

Note: If x has a bound occurrence in φ , it does not follow that $x \notin FV(\varphi)$.

 $ightharpoonup \varphi$ is closed iff $FV(\varphi) = \varnothing$

- $ightharpoonup \varphi$ is closed iff $FV(\varphi) = \varnothing$
- \blacktriangleright is the WFF φ of the form:

$$\varphi = \cdots \left(\mathbf{Q}_1 x \left(\cdots x \cdots \right) \right) \cdots \left(\mathbf{Q}_2 x \left(\cdots x \cdots \right) \right) \cdots$$

where $\mathbf{Q}_1, \mathbf{Q}_2 \in \{ \forall, \exists \}$, equivalent to:

$$\varphi' = \cdots \left(\mathbf{Q}_1 \, x \, (\cdots \, x \cdots) \right) \, \cdots \, \left(\mathbf{Q}_2 \, \underset{\uparrow}{x'} \, (\cdots \, \underset{\uparrow}{x'} \, \cdots) \right) \, \cdots \, ??$$

- ightharpoonup arphi is closed iff $FV(arphi) = \varnothing$
- \blacktriangleright is the WFF φ of the form:

$$\varphi = \quad \cdots \, \Big(\mathbf{Q}_1 \, x \, (\cdots \, x \cdots) \Big) \, \cdots \, \Big(\mathbf{Q}_2 \, x \, (\cdots \, x \cdots) \Big) \, \cdots$$

where $\mathbf{Q}_1, \mathbf{Q}_2 \in \{ \forall, \exists \}$, equivalent to:

$$\varphi' = \cdots \left(\mathbf{Q}_1 \, x \, (\cdots \, x \cdots) \right) \, \cdots \, \left(\mathbf{Q}_2 \, \underset{\uparrow}{x'} \, (\cdots \, \underset{\uparrow}{x'} \, \cdots) \right) \, \cdots \, ??$$

YES, φ and φ' are equivalent

Question: What are the advantages of φ' over φ ?

Question: Can you write a procedure to transform φ into φ' ?

Examples of QBF's:

1. a **closed** QBF (all occurrences of prop variables are **bound**):²

$$\varphi_1 \triangleq \forall x. (x \lor \exists y. (y \lor \neg x))$$

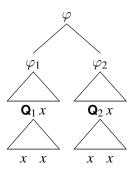
2. an open QBF (some occurrences of propositional variables are free):

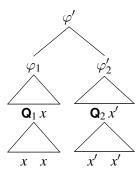
$$\varphi_2 \triangleq (\varphi_1) \land (x \to y) = (\varphi_1') \land (x \to y)$$

 φ_1' is φ_1 after renaming x and y to x' and y' (what is good about this renaming??)

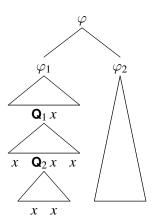
²Note the convention, for better readability, of using "." which is not part of the formal syntax to separate a quantifier from its scope and omit the outer matching parentheses, *i.e.*, we write $\forall x. \varphi$ instead $(\forall x. \varphi)$.

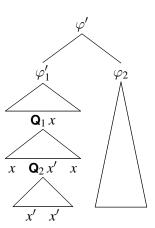
renaming binding occurrences " $\mathbf{Q}_1 x$ " and " $\mathbf{Q}_2 x$ " in **disjoint** scopes





renaming binding occurrences " $\mathbf{Q}_1 x$ " and " $\mathbf{Q}_2 x$ " in **nested** scopes



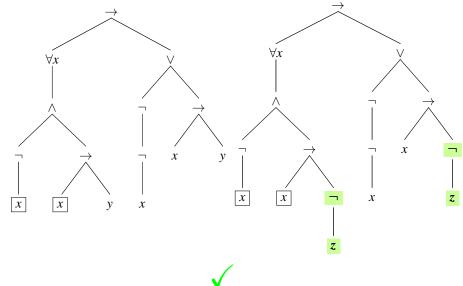


substitution examples in $\varphi = (\forall x (\neg x \land (x \rightarrow y))) \rightarrow (\neg \neg x \lor (x \rightarrow y))$

substitute $\neg z$ for y in φ : $\varphi[(\neg z)/y]$ also written $\varphi[y:=\neg z]$

substitution examples in $\varphi = (\forall x \, (\neg x \wedge (x \to y))) \to (\neg \neg x \vee (x \to y))$

substitute $\neg z$ for y in φ : $\varphi[(\neg z)/y]$ also written $\varphi[y:=\neg z]$

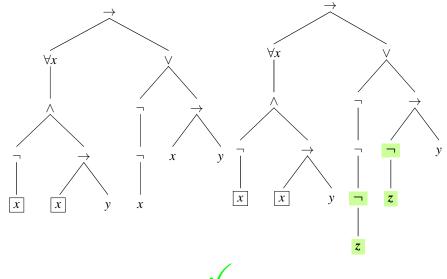


substitution examples in $\varphi = (\forall x (\neg x \land (x \to y))) \to (\neg \neg x \lor (x \to y))$

substitute $\neg z$ for x in φ : $\varphi[(\neg z)/x]$

substitution examples in $\varphi = (\forall x \, (\neg x \wedge (x \to y))) \to (\neg \neg x \vee (x \to y))$

substitute $\neg z$ for x in φ : $\varphi[(\neg z)/x]$

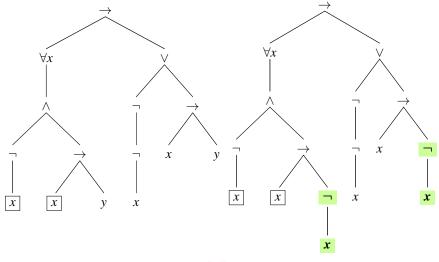


substitution examples in $\varphi = (\forall x (\neg x \land (x \rightarrow y))) \rightarrow (\neg \neg x \lor (x \rightarrow y))$

substitute $\neg x$ for y in φ : $\varphi[(\neg x)/y]$

substitution examples in $\varphi = (\forall x (\neg x \land (x \to y))) \to (\neg \neg x \lor (x \to y))$

substitute $\neg x$ for y in φ : $\varphi[(\neg x)/y]$



Syntax of QBF's: substitution in general

Precise definition of substitution in general for QBF's where u here is: **T**, or **F**, or a propositional variable:

- Exercise: The formal definition of substitution on page 18 can be simplified if every QBF is such that:
 - 1. there is at most one **binding** occurrence for the same variable,
 - 2. a variable cannot have both free and bound occurrences.

Formalize this idea.

Hint: You first need to modify the BNF definition on page 2, so that well-formed QBF's are defined simultaneously with $FV(\)$.

Why Study QBF's?

1. theoretical reasons:

deciding **validity of QBF's** (sometimes referred to as the *QBF problem* and abbreviated as TQBF for "True QBF") is the archetype PSPACE-complete problem, just as **satisfiability of propositional WFF's** (the SAT problem) is the archetype NP-complete problem.

(See vast literature relating QBF's to complexity classes.)

2. practical reasons:

QBF's provide an alternative to propositional WFF's which are often cumbersome and space-inefficient in formal modeling of systems. **trade-off:** QBF's are more expressive than propositional WFF's, but harder to decide their validity.

3. pedagogical reasons:

the study of QBF's makes the transition from propositional logic to first-order logic a little easier.

caution: QBF's are **not** part of first-order logic (why?), **QBF logic** and **first-order logic** extend propositional logic in different ways. Nonetheless:

Exercise: There is a way of embedding QBF logic into first-order logic, by introducing appropriate binary predicate symbols and . . .

Formal Proof Systems for QBF's

- a natural deduction proof system for QBF's is possible and consists of:
 - all the proof rules of natural deduction for propositional logic
 - **proof rules for universal quantification**: " $\forall x$ e" and " $\forall x$ i" (slide 22)
 - **proof rules for existential quantification**: " $\exists x$ e" and " $\exists x$ i" (slide 24)
- Hilbert-style proof systems are also possible (with axioms schemes and inference rules, not discussed here)
- tableaux-based proof systems are also possible (with additional expansion rules for the quantifiers, not discussed here)
- resolution-based proof systems for QBF's are also possible, after transforming QBF's into conjunctive normal form (CNF) – more on QBF's in CNF later
- ▶ QBF-solvers are implemented algorithms to decide validity of closed QBF's (validity and satisfiability of closed QBF's coincide, not open QBF's why?).

(Development of QBF-solvers is currently far behind that of SAT-solvers.)

two proof rules for universal quantification

universal quantifier elimination

$$\frac{\forall x \ \varphi}{\varphi[t/x]} \ \forall x \ \mathbf{e}$$

(where t is **T** or **F** or a variable y, provided y is substitutable for x)

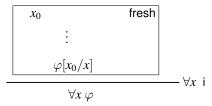
two proof rules for universal quantification

universal quantifier elimination

$$\frac{\forall x \ \varphi}{\varphi[t/x]} \ \forall x \ \mathbf{e}$$

(where t is **T** or **F** or a variable y, provided y is substitutable for x)

universal quantifier introduction



two proof rules for existential quantification

existential quantifier introduction

$$\frac{\varphi[t/x]}{\exists x \ \varphi} \ \exists x$$

(where t is **T** or **F** or a variable y, provided y is substitutable for x)

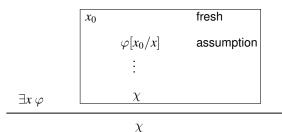
two proof rules for existential quantification

existential quantifier introduction

$$\frac{\varphi[t/x]}{\exists x \ \varphi} \ \exists x \ i$$

(where t is **T** or **F** or a variable y, provided y is substitutable for x)

existential quantifier elimination



 $(x_0 \text{ cannot occur outside its box, in particular, it cannot occur in } \chi)$

Note: Rule $(\exists x \text{ e})$ introduces both a **fresh** variable and an **assumption**.

 $\exists x \ \mathbf{e}$

Formal Semantics for QBF's

Let $\ensuremath{\mathcal{V}}$ be a set of propositional variables.

- ▶ A valuation (or interpretation) of V is a map $\mathcal{I} : V \to \{\textit{true}, \textit{false}\}.$
- $ightharpoonup \mathcal{V}$ is extended to an interpretation $\widetilde{\mathcal{I}}$ of QBF formulas φ such that $\mathsf{FV}(\varphi) \subseteq \mathcal{V}$, by induction on the (inductive) BNF definition on page 2:

Formal Semantics for QBF's

Let \mathcal{V} be a set of propositional variables.

- A valuation (or interpretation) of \mathcal{V} is a map $\mathcal{I}: \mathcal{V} \to \{\mathit{true}, \mathit{false}\}.$
- \triangleright \mathcal{V} is extended to an interpretation $\widetilde{\mathcal{I}}$ of QBF formulas φ such that $\mathsf{FV}(\varphi) \subseteq \mathcal{V}$, by induction on the (inductive) BNF definition on page 2:

Formal Semantics for QBF's

Let \mathcal{V} be a set of propositional variables.

- A valuation (or interpretation) of \mathcal{V} is a map $\mathcal{I}: \mathcal{V} \to \{\mathit{true}, \mathit{false}\}.$
- \triangleright \mathcal{V} is extended to an interpretation $\widetilde{\mathcal{I}}$ of QBF formulas φ such that $\mathsf{FV}(\varphi) \subset \mathcal{V}$, by induction on the (inductive) BNF definition on page 2:

If S is a set of QBF formulas, an interpretation $\widetilde{\mathcal{I}}$ is a model of S. in symbols $\widetilde{\mathcal{I}} \models S$, iff $\widetilde{\mathcal{I}}(\varphi) = true$ for every $\varphi \in S$.

Formal Semantics for QBF's (continued)

Useful connections between **closed** QBF's and **open** QBF's (a special case of open **open** QBF's are the propositional WFF's):

Theorem

Let φ be a QBF with free variables $FV(\varphi) = \{x_1, \dots, x_n\}$. We then have:

- φ is satisfiable iff the **closed** formula $\exists x_1 \cdots \exists x_n . \varphi$ is satisfiable.
- φ is valid iff the closed formula $\forall x_1 \cdots \forall x_n . \varphi$ is satisfiable.

Formal Semantics for QBF's (continued)

Theorem

For closed QBF's, the notions of truth (semantic validity),

formal deducibility, and satisfiability all coincide.

Specifically, given a closed QBF φ , the following are equivalent statements:

- $ightharpoonup \varphi$ is satisfiable.
- $ightharpoonup \varphi$ is valid.
- $ightharpoonup \widetilde{\mathcal{I}} \models \varphi$ for some valuation $\mathcal{I} : \mathcal{V} \to \{ \text{true}, \text{false} \}.$
- $ightharpoonup \widetilde{\mathcal{I}} \models \varphi$ for every valuation $\mathcal{I}: \mathcal{V} \to \{ \textit{true}, \textit{false} \}.$

There is also a **Soundness Theorem**, a **Compactness Theorem**, and a **Completeness Theorem**, all proved as they were for the propositional logic.

Prenex Form of QBF's

- 1. $(\mathbf{Q}_1 x_1 \varphi_1) \otimes (\mathbf{Q}_2 x_2 \varphi_2)$ transformed to $\mathbf{Q}_1 x_1 \mathbf{Q}_2 x_2 (\varphi_1 \otimes \varphi_2)$
 - where $\mathbf{Q}_1, \mathbf{Q}_2 \in \{ \forall, \exists \}$ and $\otimes \in \{ \land, \lor \}$, provided
 - x_1 is not free in φ_1 and x_2 is not free in φ_2 .
- 1a. special case of case 1 (for better QBF-solver performance):
 - $(\forall x_1 \ \varphi_1) \ \land \ (\forall x_2 \ \varphi_2)$ transformed to $\forall x_1 \ (\varphi_1 \land \varphi_2[x_2 := x_1])$
- 1b. special case of case 1 (for better QBF-solver performance):
 - $(\exists x_1 \ \varphi_1) \lor (\exists x_2 \ \varphi_2)$ transformed to $\exists x_1 \ (\varphi_1 \lor \varphi_2[x_2 := x_1])$
- 2. $(\forall x \varphi) \to \psi$ transformed to $\exists x (\varphi \to \psi)$ provided x not free in ψ .
- 3. $(\exists x \varphi) \to \psi$ transformed to $\forall x (\varphi \to \psi)$ provided x not free in ψ .
- 4. $\varphi \to (\mathbf{Q}x \, \psi)$ transformed to $\mathbf{Q}x \, (\varphi \to \psi)$ provided x not free in φ .
- 5. $\neg(\exists x \varphi)$ transformed to $\forall x (\neg \varphi)$
- 6. $\neg(\forall x \varphi)$ transformed to $\exists x (\neg \varphi)$

Conjunctive Normal Form & Disjunctive Normal Form

ightharpoonup A QBF φ is in

```
prenex conjunctive normal form (PCNF) or prenex disjunctive normal form (PDNF)
```

iff φ is in **prenex form** and its **matrix** is a CNF or a DNF, respectively.

- Generally, validity/satisfiability methods for QBF's (tableaux, resolution, QBF solvers, etc.) perform best on PCNF (resp. PDNF) if their counterparts for propositional WFF's perform best on CNF (resp. DNF).
- ▶ QBF solvers require input WFF φ be transformed into PCNF, (the **matrix** of φ is transformed into an **equisatisfiable**, rather than an **equivalent**, propositional WFF to avoid exponential explosion).
- ▶ Warning: Transformation of a QBF φ into a PCNF ψ (or PDNF ψ) is non-determinisitic. Special methods have been developed (and are being developed) for minimizing number of quantifiers and quantifier alternations in the prenex of ψ , for improved performance of QBF-solvers.

transformation of QBF's for better QBF-solver performance

- 1. introduce abbreviations for subformulas
 - **example** : consider a formula Φ of the form

$$\Phi = (\varphi \vee \psi_1) \wedge (\varphi \vee \psi_2) \wedge (\varphi \vee \psi_3)$$

• if we abbreviate (i.e., represent) φ by the fresh variable y, we can write

$$\Psi = \exists y. \ (y \leftrightarrow \varphi) \land (y \lor \psi_1) \land (y \lor \psi_2) \land (y \lor \psi_3)$$

- **exercise** : Φ and Ψ are logically equivalent
- **advantage** of Ψ over Φ : subformula φ occurs once (in Ψ) instead of three times (in Φ) for the price of two logical connectives $\{\ ``\wedge",\ ``\leftrightarrow"\ \}$ and one propositional variable $\{\ "y"\ \}$

transformation of QBF's for better QBF-solver performance

- 2. unify instances of the same subformula
 - **example** : consider a formula Φ of the form

$$\Phi = \theta(\varphi_1, \psi_1) \wedge \theta(\varphi_2, \psi_2) \wedge \theta(\varphi_3, \psi_3)$$

• unify the three occurrences of the subformula θ , and introduce fresh variables x and y to represent the φ_i 's and the ψ_i 's, resp., to obtain:

$$\Psi = \forall x. \ \forall y. \ \left(\bigvee_{i=1,2,3} (x \leftrightarrow \varphi_i) \land (y \leftrightarrow \psi_i) \right) \rightarrow \theta(x,y)$$

- **exercise** : Φ and Ψ are logically equivalent
- for many other transformations, for better QBF-solver performance, see:
 U. Bubeck and H. Büning, "Encoding Nested Boolean Functions as QBF's", in
 J. on Satisfiability, Boolean Modeling and Computation, Vol. 8 (2012), pp. 101-116

QBF as a game

A closed prenex QBF formula φ can be viewed as a game between an existential player (Player \exists) and a universal player (Player \forall):

- ightharpoonup Existentially quantied variables are owned by Player \exists .
- Universally quantied variables are owned by Player ∀.
- On each turn of the game, the owner of an outermost unassigned variable assigns it a truth value (true or false).
- ▶ The goal of Player \exists is to make φ be *true*.
- ▶ The goal of Player \forall is to make φ be *false*.
- ▶ A player owns a literal ℓ if the player owns $FV(\ell)$.

If S is the set of propositional variables occurring in the closed prenex QBF φ , then a round of the game on φ defines an interpretation $\mathcal{I}: \mathcal{V} \to \{\textit{true}, \textit{false}\}$.

Player \exists wins if $\widetilde{\mathcal{I}}(\varphi) = true$, Player \forall wins if $\widetilde{\mathcal{I}}(\varphi) = false$.

(THIS PAGE INTENTIONALLY LEFT BLANK)