CS 511, Fall 2018, Handout 15

Syntax of Predicate Logic (aka First-Order Logic)

Assaf Kfoury

October 02, 2018

from English reasoning to formal reasoning:

for all x, if x is a bird then x has wings
for all x, if x has wings then x can fly

Coco is a bird

Coco has wings

Coco's mother can fly

from English reasoning to formal reasoning:

for all x, if x is a bird then x has wings
for all x, if x has wings then x can fly

Coco is a bird

Coco has wings

Coco's mother can fly

$$
\forall x(B(x) \rightarrow W(x))
$$

$$
\forall x(W(x) \rightarrow F(x))
$$

$$
B(\mathbf{C})
$$

$$
W(\mathbf{C})
$$

$$
F(m(\mathbf{C}))
$$

from English reasoning to formal reasoning:

for all x, if x is a bird then x has wings
for all x, if x has wings then x can fly

Coco is a bird

Coco has wings

Coco's mother can fly
it is not the case that for all $x \ldots$

$$
\begin{aligned}
& \forall x(B(x) \rightarrow W(x)) \\
& \forall x(W(x) \rightarrow F(x))
\end{aligned}
$$

$$
B(\mathbf{C})
$$

$$
W(\mathbf{C})
$$

$$
F(m(\mathbf{C}))
$$

$$
\neg(\forall x(B(x) \rightarrow W(x)))
$$

from English reasoning to formal reasoning:

for all x, if x is a bird then x has wings
for all x, if x has wings then x can fly

Coco is a bird

Coco has wings

Coco's mother can fly
it is not the case that for all $x \ldots$
there exists an x such that ...
$\forall x(B(x) \rightarrow W(x))$
$\forall x(W(x) \rightarrow F(x))$
$B(\mathbf{C})$
$W(\mathbf{C})$
$F(m(\mathbf{C}))$
$\neg(\forall x(B(x) \rightarrow W(x)))$
$\exists x(B(x) \wedge \neg W(x))$

WFF's of predicate logic

- vocabulary (a.k.a. similarity type, a.k.a. signature):
- terms:
- well-formed formulas:

WFF's of predicate logic

- vocabulary (a.k.a. similarity type, a.k.a. signature):
set \mathcal{P} of predicate symbols, each of arity $n \geqslant 0$ set \mathcal{F} of function symbols, each of arity $n \geqslant 1$ set \mathcal{C} of constant symbols, \quad (a.k.a. functions of arity $=0$)
- terms:
- well-formed formulas:

WFF's of predicate logic

- vocabulary (a.k.a. similarity type, a.k.a. signature):
set \mathcal{P} of predicate symbols, each of arity $n \geqslant 0$
set \mathcal{F} of function symbols, each of arity $n \geqslant 1$
set \mathcal{C} of constant symbols, \quad (a.k.a. functions of arity $=0$)
- terms:
a variable x is a term
a constant $c \in \mathcal{C}$ is a term
if t_{1}, \ldots, t_{n} are terms and $f \in \mathcal{F}$ is n-ary, $f\left(t_{1}, \ldots, t_{n}\right)$ is a term
- as a BNF definition:

$$
t::=x|c| f(t, \ldots, t)
$$

- well-formed formulas:

WFF's of predicate logic (continued)

- well-formed formulas:

WFF's of predicate logic (continued)

- well-formed formulas:
if t_{1}, \ldots, t_{n} are terms and $P \in \mathcal{P}$ has arity $n \geqslant 0$, then $P\left(t_{1}, \ldots, t_{n}\right)$ is a WFF (a.k.a. atomic WFF)
if t_{1}, t_{2} are terms, then $t_{1} \doteq t_{2}$ is a WFF \quad (a.k.a. atomic WFF)
if φ is a WFF, then so is $\neg \varphi$
if φ and ψ are WFF's, then so are $(\varphi \wedge \psi),(\varphi \vee \psi)$, and $(\varphi \rightarrow \psi)$
if φ is a WFF and x is a variable, then so are $(\forall x \varphi)$ and ($\exists x \varphi)$ WFF's

WFF's of predicate logic (continued)

- well-formed formulas:
if t_{1}, \ldots, t_{n} are terms and $P \in \mathcal{P}$ has arity $n \geqslant 0$, then $P\left(t_{1}, \ldots, t_{n}\right)$ is a WFF (a.k.a. atomic WFF)
if t_{1}, t_{2} are terms, then $t_{1} \doteq t_{2}$ is a WFF \quad (a.k.a. atomic WFF)
if φ is a WFF, then so is $\neg \varphi$
if φ and ψ are WFF's, then so are $(\varphi \wedge \psi),(\varphi \vee \psi)$, and $(\varphi \rightarrow \psi)$
if φ is a WFF and x is a variable, then so are $(\forall x \varphi)$ and ($\exists x \varphi)$ WFF's
- as a BNF definition:
$\varphi::=P\left(t_{1}, \ldots, t_{n}\right)\left|t_{1} \doteq t_{2}\right|(\neg \varphi)|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\forall x \varphi)|(\exists x \varphi)$

WFF's of predicate logic (continued)

- well-formed formulas:
if t_{1}, \ldots, t_{n} are terms and $P \in \mathcal{P}$ has arity $n \geqslant 0$, then $P\left(t_{1}, \ldots, t_{n}\right)$ is a WFF (a.k.a. atomic WFF)
if t_{1}, t_{2} are terms, then $t_{1} \doteq t_{2}$ is a WFF \quad (a.k.a. atomic WFF)
if φ is a WFF, then so is $\neg \varphi$
if φ and ψ are WFF's, then so are $(\varphi \wedge \psi),(\varphi \vee \psi)$, and $(\varphi \rightarrow \psi)$
if φ is a WFF and x is a variable, then so are $(\forall x \varphi)$ and ($\exists x \varphi)$ WFF's
- as a BNF definition:

$$
\varphi::=P\left(t_{1}, \ldots, t_{n}\right)\left|t_{1} \doteq t_{2}\right|(\neg \varphi)|(\varphi \wedge \varphi)|(\varphi \vee \varphi)|(\forall x \varphi)|(\exists x \varphi)
$$

- are all WFF's of propositional logic WFF's of predicate logic ???

free and bound variables

- a variable x may occur free or bound in a WFF φ
- if x is bound in φ, then there are $\geqslant 0$ bound occurrences of x and $\geqslant 1$ binding occurrences of x in φ
- a binding occurrence of x is of the form " $\forall x$ " or " $\exists x$ "
- if a binding occurrence of x occurs as $(\mathbf{Q} x \varphi)$ where $\mathbf{Q} \in\{\forall, \exists\}$, then φ is the scope of the binding occurrence
- scopes of two binding occurrences " $\mathbf{Q} x$ " and " \mathbf{Q} ' $x^{\prime \prime}$ " may be

but cannot overlap

free and bound variables (continued)

- the set of free variables in terms t and WFF's φ :

$$
\begin{aligned}
& \mathrm{FV}(t)= \begin{cases}\varnothing & \text { if } t=c \\
\{x\} & \text { if } t=x \\
\mathrm{FV}\left(t_{1}\right) \cup \cdots \cup \mathrm{FV}\left(t_{n}\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases} \\
& \mathrm{FV}(\varphi)= \begin{cases}\mathrm{FV}\left(t_{1}\right) \cup \cdots \cup \mathrm{FV}\left(t_{n}\right) & \text { if } \varphi=P\left(t_{1}, \ldots, t_{n}\right) \\
\mathrm{FV}\left(t_{1}\right) \cup \mathrm{FV}\left(t_{2}\right) & \text { if } \varphi=\left(t_{1} \doteq t_{2}\right) \\
\mathrm{FV}\left(\varphi^{\prime}\right) & \text { if } \varphi=\neg \varphi^{\prime} \\
\mathrm{FV}\left(\varphi_{1}\right) \cup \mathrm{FV}\left(\varphi_{2}\right) & \text { if } \varphi=\left(\varphi_{1} \star \varphi_{2}\right), \star \in\{\wedge, \vee, \rightarrow\} \\
\mathrm{FV}\left(\varphi^{\prime}\right)-\{x\} & \text { if } \varphi=\left(\mathbf{Q} x \varphi^{\prime}\right) \text { and } \mathbf{Q} \in\{\forall, \exists\}\end{cases}
\end{aligned}
$$

free and bound variables (continued)

- the set of free variables in terms t and WFF's φ :

$$
\begin{aligned}
& \mathrm{FV}(t)= \begin{cases}\varnothing & \text { if } t=c \\
\{x\} & \text { if } t=x \\
\mathrm{FV}\left(t_{1}\right) \cup \cdots \cup \mathrm{FV}\left(t_{n}\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases} \\
& \mathrm{FV}(\varphi)= \begin{cases}\mathrm{FV}\left(t_{1}\right) \cup \cdots \cup \mathrm{FV}\left(t_{n}\right) & \text { if } \varphi=P\left(t_{1}, \ldots, t_{n}\right) \\
\mathrm{FV}\left(t_{1}\right) \cup \mathrm{FV}\left(t_{2}\right) & \text { if } \varphi=\left(t_{1} \doteq t_{2}\right) \\
\mathrm{FV}\left(\varphi^{\prime}\right) & \text { if } \varphi=\neg \varphi^{\prime} \\
\mathrm{FV}\left(\varphi_{1}\right) \cup \mathrm{FV}\left(\varphi_{2}\right) & \text { if } \varphi=\left(\varphi_{1} \star \varphi_{2}\right), \star \in\{\wedge, \vee, \rightarrow\} \\
\mathrm{FV}\left(\varphi^{\prime}\right)-\{x\} & \text { if } \varphi=\left(\mathbf{Q} x \varphi^{\prime}\right) \text { and } \mathbf{Q} \in\{\forall, \exists\}\end{cases}
\end{aligned}
$$

- assumption: every variable x has $\leqslant 1$ binding occurrence in any WFF (is this realistic?)
this assumption is not essential, but without it, a variable may occur both free and bound in the same WFF.

free and bound variables (continued)

- φ is closed iff $\mathrm{FV}(\varphi)=\varnothing$

free and bound variables (continued)

- φ is closed iff $\mathrm{FV}(\varphi)=\varnothing$
- how to satisfy the following assumption:
every variable x has $\leqslant 1$ binding occurrence in any WFF?
- consider a WFF φ (not satisfying the assumption), say:

$$
\varphi=\cdots\left(\mathbf{Q}_{1} x(\cdots x \cdots)\right) \cdots\left(\mathbf{Q}_{2} x(\cdots x \cdots)\right) \cdots
$$

where $\mathbf{Q}_{1}, \mathbf{Q}_{2} \in\{\forall, \exists\}$

free and bound variables (continued)

- φ is closed iff $\mathrm{FV}(\varphi)=\varnothing$
- how to satisfy the following assumption:
every variable x has $\leqslant 1$ binding occurrence in any WFF?
- consider a WFF φ (not satisfying the assumption), say:

$$
\varphi=\cdots\left(\mathbf{Q}_{1} x(\cdots x \cdots)\right) \cdots\left(\mathbf{Q}_{2} x(\cdots x \cdots)\right) \cdots
$$

where $\mathbf{Q}_{1}, \mathbf{Q}_{2} \in\{\forall, \exists\}$

- is φ equivalent to:

$$
\varphi^{\prime}=\cdots\left(\mathbf{Q}_{1} x(\cdots x \cdots)\right) \cdots\left(\mathbf{Q}_{2} x^{\prime}\left(\cdots x^{\prime} \cdots\right) \cdots\right) ? ?
$$

- yes, φ and φ^{\prime} are equivalent

Exercise: define the algorithm to transform φ into φ^{\prime}

free and bound variables (continued)

renaming binding occurrences " $\mathbf{Q}_{1} x$ " and " $\mathbf{Q}_{2} x$ " in disjoint scopes

free and bound variables (continued)

renaming binding occurrences " $\mathbf{Q}_{1} x$ " and " $\mathbf{Q}_{2} x$ " in nested scopes

substitution examples in

$$
\varphi=(\forall x(P(x) \wedge Q(x, y))) \rightarrow(\neg P(x) \vee Q(x, y))
$$

substitute $f(c)$ for y in $\varphi: \quad \varphi[f(c) / y] \quad$ (also written $\varphi[y:=f(c)]$)

substitution examples in

$$
\varphi=(\forall x(P(x) \wedge Q(x, y))) \rightarrow(\neg P(x) \vee Q(x, y))
$$

substitute $f(c)$ for x in φ : $\quad \varphi[f(c) / x]$

substitution examples in
 $$
\varphi=(\forall x(P(x) \wedge Q(x, y))) \rightarrow(\neg P(x) \vee Q(x, y))
$$

substitute $f(x)$ for y in φ : $\quad \varphi[f(x) / y]$

X
formal definition of substitution

formal definition of substitution

- given: term t, WFF φ, variable x, term u

$$
t[u / x]= \begin{cases}c & \text { if } t=c \\ u & \text { if } t=x \\ y & \text { if } t=y \text { and } y \neq x \\ f\left(t_{1}[u / x], \ldots, t_{n}[u / x]\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases}
$$

formal definition of substitution

- given: term t, WFF φ, variable x, term u

$$
\left.\left.\begin{array}{l}
t[u / x]= \begin{cases}c & \text { if } t=c \\
u & \text { if } t=x \\
y & \text { if } t=y \text { and } y \neq x \\
f\left(t_{1}[u / x], \ldots, t_{n}[u / x]\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases} \\
\varphi[u / x]= \begin{cases}P\left(t_{1}[u / x], \ldots, t_{n}[u / x]\right) & \text { if } \varphi=P\left(t_{1}, \ldots, t_{n}\right) \\
\left(t_{1}[u / x] \doteq t_{2}[u / x]\right) & \text { if } \varphi=\left(t_{2} \doteq t_{2}\right) \\
\neg\left(\varphi^{\prime}[u / x]\right) & \text { if } \varphi=\neg \varphi^{\prime} \\
\varphi_{1}[u / x] \star \varphi_{2}[u / x] & \text { if } \varphi=\varphi_{1} \star \varphi_{2} \text { and } \\
\mathbf{Q} y\left(\varphi^{\prime}[u / x]\right) & \star \in\{\wedge, \vee, \rightarrow\}\end{cases} \\
\\
\mathbf{Q} y \varphi^{\prime} \\
\text { if } \varphi=\mathbf{Q} y \varphi^{\prime},
\end{array}\right\} \begin{array}{ll}
\mathbf{Q} \in\{\forall, \exists\}, x \neq y, \text { and } \\
& u \text { is substitutable for } x \text { in } \varphi
\end{array}\right\}
$$

(THIS PAGE INTENTIONALLY LEFT BLANK)

