CS 511, Fall 2018, Handout 16 Predicate Logic: Proof Rules of Natural Deduction

Assaf Kfoury

October 02, 2018

Assaf Kfoury, CS 511, Fall 2018, Handout 16

proof rules for equality

equality introduction

$$\frac{1}{t \doteq t} \doteq i$$

equality elimination

$$\frac{t_1 \doteq t_2 \qquad \varphi[t_1/x]}{\varphi[t_2/x]} \doteq \mathbf{e}$$

formal proof for " \doteq " is symmetric

1
$$u_1 \doteq u_2$$
premise2 $u_1 \doteq u_1$ $\doteq i$ 3 $u_2 \doteq u_1$ $\doteq e 1, 2$

formal proof for " \doteq " is symmetric

 $u_1 \doteq u_2$ premise

$$u_1 \doteq u_1$$
 $\doteq i$

 $_3 \qquad u_2 \doteq u_1 \qquad \qquad \doteq e \ 1, 2$

Question: What above corresponds to the WFF φ in the rule \doteq e? **Answer:** " $x \doteq u_1$ " corresponds to φ in the rule \doteq e, so that " $u_1 \doteq u_1$ " corresponds to $\varphi[u_1/x]$ & " $u_2 \doteq u_1$ " corresponds to $\varphi[u_2/x]$

formal proof for " \doteq " is symmetric

 $u_1 \doteq u_2$ premise

$$u_1 \doteq u_1$$
 $\doteq i$

 $_3 \qquad u_2 \doteq u_1 \qquad \qquad \doteq e \ 1, 2$

Question: What above corresponds to the WFF φ in the rule \doteq e? **Answer:** " $x \doteq u_1$ " corresponds to φ in the rule \doteq e, so that " $u_1 \doteq u_1$ " corresponds to $\varphi[u_1/x]$ & " $u_2 \doteq u_1$ " corresponds to $\varphi[u_2/x]$

We have formally proved $u_1 \doteq u_2 \vdash u_2 \doteq u_1$

and we can therefore use as a derived proof rule

$$\frac{t_1 \doteq t_2}{t_2 \doteq t_1} \quad \doteq \text{symmetric}$$

Assaf Kfoury, CS 511, Fall 2018, Handout 16

formal proof for " \doteq " is transitive

1
$$u_2 \doteq u_3$$
premise2 $u_1 \doteq u_2$ premise3 $u_1 \doteq u_3$ $\doteq e 1, 2$

formal proof for " \doteq " is transitive

$$u_2 \doteq u_3$$
premise $u_1 \doteq u_2$ premise $u_1 \doteq u_3$ $\doteq e 1, 2$

Question: What above corresponds to the WFF φ in the rule \doteq e? **Answer:** " $u_1 \doteq x$ " corresponds to φ in the rule \doteq e, so that " $u_1 \doteq u_3$ " corresponds to $\varphi[u_3/x]$ & " $u_1 \doteq u_2$ " corresponds to $\varphi[u_2/x]$

formal proof for " \doteq " is transitive

$$u_2 \doteq u_3$$
premise $u_1 \doteq u_2$ premise $u_1 \doteq u_3$ $\doteq e 1, 2$

Question: What above corresponds to the WFF φ in the rule \doteq e? **Answer:** " $u_1 \doteq x$ " corresponds to φ in the rule \doteq e, so that " $u_1 \doteq u_3$ " corresponds to $\varphi[u_3/x]$ & " $u_1 \doteq u_2$ " corresponds to $\varphi[u_2/x]$

We have formally proved $u_1 \doteq u_2, u_2 \doteq u_3 \vdash u_1 \doteq u_3$

and we can therefore use as a derived proof rule

$$\frac{t_1 \doteq t_2 \qquad t_2 \doteq t_3}{t_1 \doteq t_3} \quad \doteq \text{ transitive}$$

Assaf Kfoury, CS 511, Fall 2018, Handout 16

proof rules for universal quantification

universal quantifier elimination

$$\frac{\forall x \varphi}{\varphi[t/x]} \forall x e$$

(usual assumption: *t* is substitutable for *x*)

universal quantifier introduction

proof rules for existential quantification

existential quantifier introduction

$$\frac{\varphi[t/x]}{\exists x \varphi} \exists x i$$

existential quantifier elimination

proof rules for existential quantification

existential quantifier introduction

$$\frac{\varphi[t/x]}{\exists x \varphi} \exists x i$$

existential quantifier elimination

(x_0 cannot occur outside its box, in particular, it cannot occur in χ)

Note carefully:

Rule $(\exists x e)$ introduces both a **fresh** variable and an **assumption**.

example: $\forall x \ \forall y \ \varphi(x, y) \vdash \forall y \ \forall x \ \varphi(x, y)$

1	$\forall x \forall y \varphi(x,y)$	premise
---	------------------------------------	---------

<i>y</i> 0	2		fresh y ₀
<i>x</i> ₀	3		fresh x ₀
	4	$\forall y \ \varphi(x_0, y)$	$\forall x \ \mathbf{e}, 1$
	5	$\varphi(x_0, y_0)$	$\forall x e, 4$
	6	$\forall x \ \varphi(x, y_0)$	$\forall x i, 5$
	7	$\forall y \ \forall x \ \varphi(x, y)$	$\forall y i, 6$

example: $\forall x \ (P(x) \rightarrow Q(x)), \ \forall x \ P(x) \vdash \ \forall x \ Q(x)$

	1	$\forall x \ (P(x) \to Q(x))$	premise
	2	$\forall x \ P(x)$	premise
<i>x</i> ₀	3		fresh x ₀
	4	$P(x_0) o Q(x_0)$	$\forall x \ \mathbf{e}, 1$
	5	$P(x_0)$	$\forall x e, 2$
	6	$Q(x_0)$	ightarrowe,4,5
	7	$\forall x \ Q(x)$	$\forall x i, 3-6$

	1	$\exists x \ (\varphi(x) \lor \psi(x))$		premise
<i>x</i> ₀	2			fresh x ₀
	3	$\varphi(x_0) \lor \psi(x_0)$		assumption
	4	$\varphi(x_0)$	$\psi(x_0)$	assumption
	5	$\exists x \ \varphi(x)$	$\exists x \ \psi(x)$	$\exists x i, 4$
	6	$\exists x \ \varphi(x) \lor \exists x \ \psi(x)$	$\exists x \ \varphi(x) \lor \exists x \ \psi(x)$	∨i, 5
	7	$\exists x \ \varphi(x) \lor \exists x \ \psi(x)$		\lor e,3,4-6
	8	$\exists x \ \varphi(x) \lor \exists x \ \psi(x)$		$\exists x \ e, 1, 2-7$

example: $\exists x \varphi(x) \lor \exists x \psi(x) \vdash \exists x (\varphi(x) \lor \psi(x))$

example: $\exists x \varphi(x) \lor \exists x \psi(x) \vdash \exists x (\varphi(x) \lor \psi(x))$

► Yes, this is a derivable sequent – left to you.

► Hence,
$$\exists x \ \varphi(x) \lor \exists x \ \psi(x) \dashv \exists x \ (\varphi(x) \lor \psi(x))$$

► Yes, this is a derivable sequent – similar to the formal proof of $\exists x \ (\varphi(x) \lor \psi(x)) \vdash \exists x \ \varphi(x) \lor \exists x \ \psi(x)$

- ► Yes, this is a derivable sequent similar to the formal proof of $\exists x \ (\varphi(x) \lor \psi(x)) \vdash \exists x \ \varphi(x) \lor \exists x \ \psi(x)$
- ► Question: $\exists x \ \varphi(x) \land \exists x \ \psi(x) \vdash \exists x \ (\varphi(x) \land \psi(x))$?? No, this is not a derivable sequent

- ► Yes, this is a derivable sequent similar to the formal proof of $\exists x \ (\varphi(x) \lor \psi(x)) \vdash \exists x \ \varphi(x) \lor \exists x \ \psi(x)$
- ► Question: $\exists x \varphi(x) \land \exists x \psi(x) \vdash \exists x (\varphi(x) \land \psi(x))$??

No, this is not a derivable sequent Find an interpretation (a "model") where $\exists x \varphi(x) \land \exists x \psi(x) \text{ is true, but}$ $\exists x (\varphi(x) \land \psi(x)) \text{ is false}$

► Hence, $\exists x (\varphi(x) \land \psi(x)) \land \vdash \exists x \varphi(x) \land \exists x \psi(x)$

- ► Yes, this is a derivable sequent similar to the formal proof of $\exists x \ (\varphi(x) \lor \psi(x)) \vdash \exists x \ \varphi(x) \lor \exists x \ \psi(x)$
- ► Question: $\exists x \varphi(x) \land \exists x \psi(x) \vdash \exists x (\varphi(x) \land \psi(x))$??

No, this is not a derivable sequent

Find an interpretation (a "model") where $\exists x \ \varphi(x) \land \exists x \ \psi(x) \text{ is true, but}$ $\exists x \ (\varphi(x) \land \psi(x)) \text{ is false}$

► Hence, $\exists x \ (\varphi(x) \land \psi(x)) \land \vdash \exists x \ \varphi(x) \land \exists x \ \psi(x)$

REMEMBER! To show that a WFF is **NOT** derivable, it is generally easier to find an interpretation where the WFF is not satisfiable.

example: $\exists x \ P(x), \forall x \ \forall y \ (P(x) \rightarrow Q(y)) \vdash \forall y \ Q(y)$

example: $\exists x \ P(x), \forall x \ \forall y \ (P(x) \rightarrow Q(y)) \vdash \forall y \ Q(y)$

	1	$\exists x P(x)$	premise
	2	$\forall x \; \forall y \; (P(x) \to Q(y))$	premise
<i>y</i> 0	3		fresh y ₀
<i>x</i> ₀	4		fresh x ₀
	5	$P(x_0)$	assumption
	6	$\forall y \ (P(x_0) \to Q(y))$	$\forall x e, 2$
	7	$P(x_0) o Q(y_0)$	$\forall y e, 6$
	8	$Q(y_0)$	ightarrowe, 5, 7
	9	$Q(y_0)$	$\exists x \ e, 1, 4-8$
	10	$\forall y \ Q(y)$	$\forall y i, 3-9$

quantifier equivalences

Theorem

$$\neg \forall x \varphi \dashv \vdash \exists x \neg \varphi \neg \exists x \varphi \dashv \vdash \forall x \neg \varphi$$

$$Assume x is not free in \psi: \forall x \varphi \land \psi \dashv \vdash \forall x (\varphi \land \psi) \forall x \varphi \lor \psi \dashv \vdash \forall x (\varphi \land \psi) \exists x \varphi \land \psi \dashv \vdash \exists x (\varphi \land \psi) \exists x \varphi \lor \psi \dashv \vdash \exists x (\varphi \land \psi) \exists x (\psi \rightarrow \varphi) \dashv \vdash \forall x \varphi \rightarrow \forall x \varphi \exists x (\varphi \rightarrow \psi) \dashv \vdash \forall x \varphi \rightarrow \psi \forall x (\psi \rightarrow \varphi) \dashv \vdash \forall x \varphi \rightarrow \psi \forall x (\psi \rightarrow \varphi) \dashv \vdash \forall x \varphi \rightarrow \psi \exists x (\psi \rightarrow \varphi) \dashv \vdash \forall x \varphi \rightarrow \psi \exists x (\psi \rightarrow \varphi) \dashv \vdash \forall x \varphi \rightarrow \psi$$

proof of only one quantifier equivalence, others in the book

$$\blacktriangleright \neg \forall x \varphi \vdash \exists x \neg \varphi$$

proof of only one quantifier equivalence, others in the book

$$\blacktriangleright \neg \forall x \varphi \vdash \exists x \neg \varphi$$

	1	$\neg \forall x \varphi$	premise
	2	$\neg \exists x \neg \varphi$	assumption
<i>x</i> ₀	3		fresh x ₀
	4	$\neg \varphi[x_0/x]$	assumption
	5	$\exists x \neg \varphi$	$\exists x i, 4$
	6	\perp	$\neg e, 5, 2$
	7	$\varphi[x_0/x]$	PBC, 4-6
	8	$\forall x \ \varphi$	$\forall x i, 3-7$
	9	\perp	egreenthingty, 0
	10	$\exists x \neg \varphi$	PBC, 2-9

three fundamental questions

Question

Given a WFF φ , can we automate the answer to the query " $\vdash \varphi$??"

Question

Given a WFF φ , can we automate the answer to the query " $\not\vdash \varphi$??"

Question

Given a formal proof

1. φ_1 2. φ_2 3. \vdots *n*. φ_n

can we automate the verification of the proof?

(THIS PAGE INTENTIONALLY LEFT BLANK)