CS 511, Fall 2018, Handout 17

Predicate Logic: Semantics

Assaf Kfoury

October 02, 2018

first-order models (structures)

- \blacktriangleright given a vocabulary , aka signature or similarity type , $(\mathcal{F},\mathcal{P})$:
 - a set F of function symbols (including constant symbols as zero-ary function symbols)
 - ightharpoonup a set $\mathcal P$ of **predicate** symbols
- ▶ a **model** \mathcal{M} for $(\mathcal{F}, \mathcal{P})$ consists of:
 - ightharpoonup a non-empty set A, the **universe** or **domain** of concrete values
 - for every 0-ary $c \in \mathcal{F}$, a concrete element $c^{\mathcal{M}}$
 - ▶ for every n-ary $f \in \mathcal{F}$, with $n \geqslant 1$, a concrete function $f^{\mathcal{M}}: A^n \rightarrow A$
 - ▶ for every n-ary $P \in \mathcal{P}$, with $n \ge 1$, a concrete predicate $P^{\mathcal{M}} \subseteq A^n$

interpretation of open WFF's requires an environment

- We need an environment to interpret WFF's with free variables.
- ▶ an **environment** or **look-up table** for model $\mathcal{M} \triangleq (A, \mathcal{P}^{\mathcal{M}}, \mathcal{F}^{\mathcal{M}})$:

$$\ell: \{ \text{all variables} \} \to A$$

▶ $\ell[x \mapsto a]$ denotes an adjustment of ℓ at variable x:

$$\ell[x\mapsto a](y) \triangleq \begin{cases} a & \text{if } x \text{ and } y \text{ are the same variable} \\ \ell(y) & \text{otherwise} \end{cases}$$

satisfaction of WFF's w.r.t. model ${\mathcal M}$ and look-up table ℓ

interpretation of terms:

$$t^{\mathcal{M},\ell} \triangleq \begin{cases} \ell(x) & \text{if } t = x \\ c^{\mathcal{M}} & \text{if } t = c \text{ where } c \text{ is constant symbol} \\ f^{\mathcal{M}}(t_1^{\mathcal{M},\ell},\dots,t_n^{\mathcal{M},\ell}) & \text{if } t = f(t_1,\dots,t_n) \text{ where } f \text{ is } n\text{-ary with } n \geqslant 1 \end{cases}$$

satisfaction of WFF's w.r.t. model ${\mathcal M}$ and look-up table ℓ

interpretation of terms:

$$t^{\mathcal{M},\ell} \triangleq \begin{cases} \ell(x) & \text{if } t = x \\ c^{\mathcal{M}} & \text{if } t = c \text{ where } c \text{ is constant symbol} \\ f^{\mathcal{M}}(t_1^{\mathcal{M},\ell},\dots,t_n^{\mathcal{M},\ell}) & \text{if } t = f(t_1,\dots,t_n) \text{ where } f \text{ is } n\text{-ary with } n \geqslant 1 \end{cases}$$

interpretation of WFF's:

$$ightharpoonup \mathcal{M}, \ell \models (t_1 \doteq t_2) \quad \text{iff} \quad t_1^{\mathcal{M},\ell} = t_2^{\mathcal{M},\ell}$$

$$\blacktriangleright \mathcal{M}, \ell \models P(t_1, \ldots, t_n) \quad \text{iff} \quad \langle t_1^{\mathcal{M}, \ell}, \ldots, t_n^{\mathcal{M}, \ell} \rangle \in P^{\mathcal{M}}$$

$$ightharpoonup \mathcal{M}, \ell \models \varphi \lor \psi \quad \text{iff} \quad \mathcal{M}, \ell \models \varphi \quad \text{or} \quad \mathcal{M}, \ell \models \psi$$

$$\blacktriangleright \mathcal{M}, \ell \models \varphi \land \psi$$
 iff $\mathcal{M}, \ell \models \varphi$ and $\mathcal{M}, \ell \models \psi$

$$\blacktriangleright \ \mathcal{M}, \ell \models \varphi \rightarrow \psi \quad \text{iff} \quad \mathcal{M}, \ell \models \psi \ \text{ whenever } \mathcal{M}, \ell \models \varphi$$

$$ightharpoonup \mathcal{M}, \ell \models \neg \varphi$$
 iff it is **not** the case that $\mathcal{M}, \ell \models \varphi$

$$ightharpoonup \mathcal{M}, \ell \models \forall x \varphi \quad \text{iff} \quad \mathcal{M}, \ell[x \mapsto a] \models \varphi \text{ for every } a \in A$$

•
$$\mathcal{M}, \ell \models \exists x \varphi$$
 iff $\mathcal{M}, \ell[x \mapsto a] \models \varphi$ for some $a \in A$

semantic entailment, semantic validity, satisfiability

- ▶ WFF φ is satisfiable iff there is some $\mathcal M$ and some ℓ such that $\mathcal M, \ell \models \varphi$
- ▶ WFF φ is **semantically valid** iff for every \mathcal{M} and every ℓ it is the case that $\mathcal{M}, \ell \models \varphi$

semantic entailment, semantic validity, satisfiability

- ▶ WFF φ is satisfiable iff there is some $\mathcal M$ and some ℓ such that $\mathcal M, \ell \models \varphi$
- ▶ WFF φ is **semantically valid** iff for every \mathcal{M} and every ℓ it is the case that $\mathcal{M}, \ell \models \varphi$

let Γ be a set of WFF's:

semantic entailment, semantic validity, satisfiability

- ▶ WFF φ is satisfiable iff there is some $\mathcal M$ and some ℓ such that $\mathcal M, \ell \models \varphi$
- ▶ WFF φ is **semantically valid** iff for every \mathcal{M} and every ℓ it is the case that $\mathcal{M}, \ell \models \varphi$

let Γ be a set of WFF's:

- ▶ Γ is **satisfiable** iff there is some \mathcal{M} and some ℓ such that $\mathcal{M}, \ell \models \Gamma$, *i.e.*, $\mathcal{M}, \ell \models \varphi$ for every $\varphi \in \Gamma$
- ▶ semantic entailment: $\Gamma \models \psi$ iff for every $\mathcal M$ and every ℓ , it holds that $\mathcal M, \ell \models \Gamma$ implies $\mathcal M, \ell \models \psi$

tautologies and (semantical) validities

▶ validities (or semantical validities) are WFF's that are satisfied by (or true in) every model $\mathcal M$ and environment ℓ

tautologies and (semantical) validities

- ▶ validities (or semantical validities) are WFF's that are satisfied by (or true in) every model $\mathcal M$ and environment ℓ
- tautologies are a proper subset of the first-order validities
- ▶ in **propositional logic**, the two notions coincide
- in first-order logic, a tautology is a WFF that can be obtained by taking a tautology of propositional logic and uniformly replacing each propositional atom (or variable) by a first-order formula (one formula per propositional atom)

tautologies and (semantical) validities

- ▶ validities (or semantical validities) are WFF's that are satisfied by (or true in) every model $\mathcal M$ and environment ℓ
- ► tautologies are a proper subset of the first-order validities
- ▶ in **propositional logic**, the two notions coincide
- in first-order logic, a tautology is a WFF that can be obtained by taking a tautology of propositional logic and uniformly replacing each propositional atom (or variable) by a first-order formula (one formula per propositional atom)
- example of a first-order validity which is not a tautology:

$$(\forall x \varphi) \rightarrow (\neg \exists x \neg \varphi)$$

(THIS PAGE INTENTIONALLY LEFT BLANK)