CS 511, Fall 2018, Handout 18

Examples of First-Order Theories

Assaf Kfoury

October 4, 2018

equivalence relations

1. $\forall x \quad(x \sim x)$
2. $\forall x \forall y \quad(x \sim y \rightarrow y \sim x)$
3. $\forall x \forall y \forall z \quad(x \sim y \wedge y \sim z \rightarrow x \sim z)$
reflexivity
symmetry
transitivity

equality with uninterpreted functions (EUF)

1. $\forall x \quad(x \doteq x)$
reflexivity
2. $\forall x \forall y \quad(x \doteq y \rightarrow y \doteq x)$
symmetry
3. $\forall x \forall y \forall z \quad(x \doteq y \wedge y \doteq z \rightarrow x \doteq z)$ transitivity

The three preceding axioms are identical to those in the theory of equivalence relations (preceding page).

equality with uninterpreted functions (EUF)

1. $\forall x \quad(x \doteq x)$
2. $\forall x \forall y \quad(x \doteq y \rightarrow y \doteq x)$
3. $\forall x \forall y \forall z \quad(x \doteq y \wedge y \doteq z \rightarrow x \doteq z)$
reflexivity
symmetry
transitivity

The three preceding axioms are identical to those in the theory of equivalence relations (preceding page).
4. for every function symbol $f \in \mathcal{F}$ of arity $n \geqslant 1$:

$$
\begin{aligned}
& \forall x_{1} \cdots \forall x_{n} \forall y_{1} \cdots \forall y_{n} \\
& \left(\bigwedge_{1 \leqslant i \leqslant n} x_{i} \doteq y_{i}\right) \rightarrow f\left(x_{1}, \ldots, x_{n}\right) \doteq f\left(y_{1}, \ldots, y_{n}\right) \quad \text { congruence }
\end{aligned}
$$

orders

1. $\forall x \forall y \forall z \quad(x \leqslant y \wedge y \leqslant z \rightarrow x \leqslant z)$
2. $\forall x \quad(x \leqslant x)$
3. $\forall x \forall y \quad(x \leqslant y \wedge y \leqslant x \rightarrow x \doteq y)$
transitive
reflexive
anti-symmetric
(1), (2) and (3) make " \leqslant " a partial order, which may not be total (what is an example of a partial order which is not total?)

orders

1. $\forall x \forall y \forall z \quad(x \leqslant y \wedge y \leqslant z \rightarrow x \leqslant z)$
transitive
2. $\forall x \quad(x \leqslant x)$
reflexive
3. $\forall x \forall y \quad(x \leqslant y \wedge y \leqslant x \rightarrow x \doteq y)$
anti-symmetric
(1), (2) and (3) make " \leqslant " a partial order, which may not be total (what is an example of a partial order which is not total?)
4. $\forall x \forall y \quad(x \leqslant y \vee y \leqslant x)$
total (or linear) ordering
5. $\forall x \forall z \quad(x<z \rightarrow \exists y \quad(x<y \wedge y<z))$
dense ordering
(where " $x<y$ " abbreviates " $(x \leqslant y) \wedge \neg(x \doteq y)$ ")

orders

1. $\forall x \forall y \forall z \quad(x \leqslant y \wedge y \leqslant z \rightarrow x \leqslant z)$
transitive
2. $\forall x \quad(x \leqslant x)$
reflexive
3. $\forall x \forall y \quad(x \leqslant y \wedge y \leqslant x \rightarrow x \doteq y)$
(1), (2) and (3) make " \leqslant " a partial order, which may not be total (what is an example of a partial order which is not total?)
4. $\forall x \forall y \quad(x \leqslant y \vee y \leqslant x) \quad$ total (or linear) ordering
5. $\forall x \forall z \quad(x<z \rightarrow \exists y \quad(x<y \wedge y<z))$ dense ordering (where " $x<y$ " abbreviates " $(x \leqslant y) \wedge \neg(x \doteq y)$ ")
6. $\exists x \forall y \quad(x \leqslant y)$ smallest element
7. $\exists x \forall y \quad(y \leqslant x)$ largest element

orders

1. $\forall x \forall y \forall z \quad(x \leqslant y \wedge y \leqslant z \rightarrow x \leqslant z)$
transitive
2. $\forall x \quad(x \leqslant x)$
reflexive
3. $\forall x \forall y \quad(x \leqslant y \wedge y \leqslant x \rightarrow x \doteq y)$
(1), (2) and (3) make " \leqslant " a partial order, which may not be total (what is an example of a partial order which is not total?)
4. $\forall x \forall y \quad(x \leqslant y \vee y \leqslant x) \quad$ total (or linear) ordering
5. $\forall x \forall z \quad(x<z \rightarrow \exists y \quad(x<y \wedge y<z)) \quad$ dense ordering (where " $x<y$ " abbreviates " $(x \leqslant y) \wedge \neg(x \doteq y)$ ")
6. $\exists x \forall y \quad(x \leqslant y)$
smallest element
largest element
can we express a well-ordering in first-order logic? i.e., "every non-empty subset has a smallest element"?

algebras with two binary operations

1. $\forall x \forall y \forall z \quad(x \oplus(y \oplus z) \doteq(x \oplus y) \oplus z)$
\oplus is associative
2. $\forall x \forall y \quad(x \oplus y \doteq y \oplus x)$
\oplus is commutative
3. $\forall x \forall y \forall z \quad(x \otimes(y \oplus z) \doteq(x \otimes y) \oplus(x \otimes z))$
\otimes distributes over \oplus

groups

1. $\forall x \quad(e \cdot x \doteq x \wedge x \cdot e \doteq x)$
2. $\forall x \exists y \quad(x \cdot y \doteq e \wedge y \cdot x \doteq e)$
3. $\forall x \forall y \forall z \quad((x \cdot y) \cdot z \doteq x \cdot(y \cdot z))$
identity (or neutral element)
inverse
associative

groups

1. $\forall x \quad(e \cdot x \doteq x \wedge x \cdot e \doteq x)$
identity (or neutral element)
2. $\forall x \exists y \quad(x \cdot y \doteq e \wedge y \cdot x \doteq e)$ inverse
3. $\forall x \forall y \forall z \quad((x \cdot y) \cdot z \doteq x \cdot(y \cdot z))$ associative
three preceding WFF's are true in every group, does the following WFF φ follows from the preceding three: $\varphi \triangleq \forall x \forall y \forall z \quad(x \cdot y \doteq e \wedge x \cdot z \doteq e \rightarrow y \doteq z) ? ?$

groups

1. $\forall x \quad(e \cdot x \doteq x \wedge x \cdot e \doteq x)$
2. $\forall x \exists y \quad(x \cdot y \doteq e \wedge y \cdot x \doteq e)$
3. $\forall x \forall y \forall z \quad((x \cdot y) \cdot z \doteq x \cdot(y \cdot z))$
identity (or neutral element)
inverse
associative
three preceding WFF's are true in every group, does the following WFF φ follows from the preceding three:
$\varphi \triangleq \forall x \forall y \forall z \quad(x \cdot y \doteq e \wedge x \cdot z \doteq e \rightarrow y \doteq z) ? ?$
some special cases of groups:
4. $\forall x \forall y \quad(x \cdot y \doteq y \cdot x)$
abelian group
5. $\forall x \quad(x \cdot x \doteq e \rightarrow x \doteq e)$, torsion-free group
$\forall x \quad(x \cdot x \cdot x \doteq e \rightarrow x \doteq e)$,
$\forall x \quad(x \cdot x \cdot x \cdot x \doteq e \rightarrow x \doteq e), \ldots$

graphs

1. $\forall x \forall y \quad(R(x, y) \rightarrow R(y, x))$
the graph is undirected
2. $\forall x \quad(\neg R(x, x))$
there are no "loops" in the graph

graphs

1. $\forall x \forall y \quad(R(x, y) \rightarrow R(y, x))$
the graph is undirected
2. $\forall x \quad(\neg R(x, x))$
there are no "loops" in the graph
assume there are two domains:
the domain V of vertices, the domain \mathbb{R} of real numbers
assume there is a capacity function: $\quad c: V \times V \rightarrow \mathbb{R}$
a flow is a function $\quad f: V \times V \rightarrow \mathbb{R}$
3. $\forall f \forall x \forall y \quad(f(x, y) \leqslant c(x, y))$
is (3) a first-order WFF?

successor function over the natural numbers

1. $\forall x \quad(\neg(S x \doteq 0))$
2. $\forall x \forall y \quad(\mathrm{~S} x \doteq \mathrm{~S} y \rightarrow x \doteq y)$
3. $\forall x \quad(\neg(x \doteq 0) \rightarrow \exists y(\mathrm{~S} y \doteq x))$

successor function over the natural numbers

1. $\forall x \quad(\neg(S x \doteq 0))$
2. $\forall x \forall y \quad(\mathrm{~S} x \doteq \mathrm{~S} y \rightarrow x \doteq y)$
3. $\forall x \quad(\neg(x \doteq 0) \rightarrow \exists y(\mathrm{~S} y \doteq x))$
4. for every WFF $\varphi(x)$ with a single free variable x, include the axiom $\varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(\mathrm{S} x)) \quad \rightarrow \quad \forall y \varphi(y)$

successor function over the natural numbers

1. $\forall x \quad(\neg(S x \doteq 0))$
2. $\forall x \forall y \quad(\mathrm{~S} x \doteq \mathrm{~S} y \rightarrow x \doteq y)$
3. $\forall x \quad(\neg(x \doteq 0) \rightarrow \exists y(\mathrm{~S} y \doteq x))$
4. for every WFF $\varphi(x)$ with a single free variable x, include the axiom $\varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(\mathrm{S} x)) \quad \rightarrow \quad \forall y \varphi(y)$
with addition:
5. $\forall x \quad(x+0 \doteq x)$
6. $\forall x \forall y \quad(x+\mathrm{S} y \doteq \mathrm{~S}(x+y))$

successor function over the natural numbers

1. $\forall x \quad(\neg(S x \doteq 0))$
2. $\forall x \forall y \quad(\mathrm{~S} x \doteq \mathrm{~S} y \rightarrow x \doteq y)$
3. $\forall x \quad(\neg(x \doteq 0) \rightarrow \exists y(\mathrm{~S} y \doteq x))$
4. for every WFF $\varphi(x)$ with a single free variable x, include the axiom $\varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(\mathrm{S} x)) \quad \rightarrow \quad \forall y \varphi(y)$
with addition:
5. $\forall x \quad(x+0 \doteq x)$
6. $\forall x \forall y \quad(x+\mathrm{S} y \doteq \mathrm{~S}(x+y))$
with addition and multiplication:
7. $\forall x \quad(x \times 0 \doteq 0)$
8. $\forall x \forall y \quad(x \times \mathrm{S} y \doteq(x \times y)+x)$

linear integer arithmetic (LIA)

1. $\mathcal{P}=\{\leqslant\}, \quad \mathcal{F}=\{+,-\}, \quad \mathcal{C}=\{0,1\}$.
2. include all axioms for "+" and "-".
3. atomic WFF's are all of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \bowtie b
$$

where $\bowtie \in\{\leqslant,<, \geqslant,>, \doteq, \neq\}$ and a_{1}, \ldots, a_{n}, b are integers.

(THIS PAGE INTENTIONALLY LEFT BLANK)

