CS 511, Fall 2018, Handout 18 Examples of First-Order Theories

Assaf Kfoury

October 4, 2018

Assaf Kfoury, CS 511, Fall 2018, Handout 18

page 1 of 20

equivalence relations

1.
$$\forall x \quad (x \sim x)$$
reflexivity2. $\forall x \forall y \quad (x \sim y \rightarrow y \sim x)$ symmetry3. $\forall x \forall y \forall z \quad (x \sim y \land y \sim z \rightarrow x \sim z)$ transitivity

equality with uninterpreted functions (EUF)

1.
$$\forall x \quad (x \doteq x)$$
reflexivity2. $\forall x \forall y \quad (x \doteq y \rightarrow y \doteq x)$ symmetry3. $\forall x \forall y \forall z \quad (x \doteq y \land y \doteq z \rightarrow x \doteq z)$ transitivity

The three preceding axioms are identical to those in the theory of **equivalence relations** (preceding page).

equality with uninterpreted functions (EUF)

1.
$$\forall x \quad (x \doteq x)$$
reflexivity2. $\forall x \forall y \quad (x \doteq y \rightarrow y \doteq x)$ symmetry3. $\forall x \forall y \forall z \quad (x \doteq y \land y \doteq z \rightarrow x \doteq z)$ transitivity

The three preceding axioms are identical to those in the theory of **equivalence relations** (preceding page).

4. for every function symbol $f \in \mathcal{F}$ of arity $n \ge 1$:

$$\forall x_1 \cdots \forall x_n \forall y_1 \cdots \forall y_n \\ \left(\bigwedge_{1 \leq i \leq n} x_i \doteq y_i \right) \to f(x_1, \dots, x_n) \doteq f(y_1, \dots, y_n)$$
 congruence

1.
$$\forall x \ \forall y \ \forall z \quad (x \leqslant y \land y \leqslant z \rightarrow x \leqslant z)$$
transitive2. $\forall x \quad (x \leqslant x)$ reflexive3. $\forall x \ \forall y \quad (x \leqslant y \land y \leqslant x \rightarrow x \doteq y)$ anti-symmetric

(1), (2) and (3) make "≤" a **partial** order, which may not be **total**(what is an example of a partial order which is not total?)

1.
$$\forall x \ \forall y \ \forall z \quad (x \leqslant y \land y \leqslant z \rightarrow x \leqslant z)$$
transitive2. $\forall x \quad (x \leqslant x)$ reflexive3. $\forall x \ \forall y \quad (x \leqslant y \land y \leqslant x \rightarrow x \doteq y)$ anti-symmetric

(1), (2) and (3) make " \leq " a **partial** order, which may not be **total** (what is an example of a partial order which is not total?)

4. $\forall x \forall y \quad (x \leq y \lor y \leq x)$ total (or linear) ordering 5. $\forall x \forall z \quad (x < z \rightarrow \exists y \quad (x < y \land y < z))$ dense ordering (where "x < y" abbreviates " $(x \leq y) \land \neg (x \doteq y)$ ")

1.
$$\forall x \ \forall y \ \forall z \quad (x \leqslant y \land y \leqslant z \rightarrow x \leqslant z)$$
transitive2. $\forall x \quad (x \leqslant x)$ reflexive3. $\forall x \ \forall y \quad (x \leqslant y \land y \leqslant x \rightarrow x \doteq y)$ anti-symmetric

(1), (2) and (3) make " \leq " a **partial** order, which may not be **total** (what is an example of a partial order which is not total?)

4. $\forall x \forall y \quad (x \leq y \lor y \leq x)$ total (or linear) ordering5. $\forall x \forall z \quad (x < z \rightarrow \exists y \quad (x < y \land y < z)))$ dense ordering
(where "x < y" abbreviates " $(x \leq y) \land \neg (x \doteq y)$ ")6. $\exists x \forall y \quad (x \leq y)$ smallest element7. $\exists x \forall y \quad (y \leq x)$ largest element

1.
$$\forall x \ \forall y \ \forall z \quad (x \leqslant y \land y \leqslant z \rightarrow x \leqslant z)$$
transitive2. $\forall x \quad (x \leqslant x)$ reflexive3. $\forall x \ \forall y \quad (x \leqslant y \land y \leqslant x \rightarrow x \doteq y)$ anti-symmetric

(1), (2) and (3) make " \leq " a **partial** order, which may not be **total** (what is an example of a partial order which is not total?)

4. $\forall x \forall y \quad (x \leq y \lor y \leq x)$ total (or linear) ordering5. $\forall x \forall z \quad (x < z \rightarrow \exists y \quad (x < y \land y < z)))$ dense ordering
(where "x < y" abbreviates " $(x \leq y) \land \neg (x \doteq y)$ ")6. $\exists x \forall y \quad (x \leq y)$ smallest element7. $\exists x \forall y \quad (y \leq x)$ largest element

can we express a **well-ordering** in first-order logic? i.e., "every non-empty subset has a smallest element"?

algebras with two binary operations

1.
$$\forall x \ \forall y \ \forall z \quad \left(x \oplus (y \oplus z) \doteq (x \oplus y) \oplus z \right)$$

 \oplus is associative

2.
$$\forall x \forall y \quad (x \oplus y \doteq y \oplus x)$$

 \oplus is commutative

3.
$$\forall x \forall y \forall z \quad (x \otimes (y \oplus z) \doteq (x \otimes y) \oplus (x \otimes z))$$

 \otimes distributes over \oplus

groups

1.
$$\forall x \quad (e \cdot x \doteq x \land x \cdot e \doteq x)$$

2. $\forall x \exists y \quad (x \cdot y \doteq e \land y \cdot x \doteq e)$
3. $\forall x \forall y \forall z \quad ((x \cdot y) \cdot z \doteq x \cdot (y \cdot z))$

identity (or neutral element) inverse

associative

groups

1.
$$\forall x \quad (e \cdot x \doteq x \land x \cdot e \doteq x)$$
identity (or neutral element)2. $\forall x \exists y \quad (x \cdot y \doteq e \land y \cdot x \doteq e)$ inverse3. $\forall x \forall y \forall z \quad ((x \cdot y) \cdot z \doteq x \cdot (y \cdot z))$ associative

three preceding WFF's are true in every group,

does the following WFF φ follows from the preceding three:

$$\varphi \triangleq \forall x \forall y \forall z \quad (x \cdot y \doteq e \land x \cdot z \doteq e \rightarrow y \doteq z) ??$$

groups

1.
$$\forall x \quad (e \cdot x \doteq x \land x \cdot e \doteq x)$$
identity (or neutral element)2. $\forall x \exists y \quad (x \cdot y \doteq e \land y \cdot x \doteq e)$ inverse3. $\forall x \forall y \forall z \quad ((x \cdot y) \cdot z \doteq x \cdot (y \cdot z))$ associative

three preceding WFF's are true in every group,

does the following WFF φ follows from the preceding three:

$$\varphi \triangleq \forall x \forall y \forall z \quad (x \cdot y \doteq e \land x \cdot z \doteq e \rightarrow y \doteq z) ??$$

some special cases of groups:

4.
$$\forall x \forall y \quad (x \cdot y \doteq y \cdot x)$$
 abelian group
5. $\forall x \quad (x \cdot x \doteq e \rightarrow x \doteq e),$ torsion-free group
 $\forall x \quad (x \cdot x \cdot x \doteq e \rightarrow x \doteq e),$
 $\forall x \quad (x \cdot x \cdot x \cdot x \doteq e \rightarrow x \doteq e), \dots$

graphs

1. $\forall x \ \forall y \ (R(x,y) \rightarrow R(y,x))$

the graph is undirected

2. $\forall x \quad (\neg R(x, x))$

there are no "loops" in the graph

graphs

1. $\forall x \ \forall y \ (R(x,y) \rightarrow R(y,x))$

the graph is undirected

2. $\forall x \quad (\neg R(x, x))$

there are no "loops" in the graph

assume there are two domains: the domain V of vertices, the domain $\mathbb R$ of real numbers

assume there is a capacity function: $c: V \times V \rightarrow \mathbb{R}$

a flow is a function $f: V \times V \to \mathbb{R}$

3. $\forall f \forall x \forall y \ (f(x, y) \leq c(x, y))$ is (3) a first-order WFF?

1.
$$\forall x \quad (\neg (Sx \doteq 0))$$

2. $\forall x \forall y \quad (Sx \doteq Sy \rightarrow x \doteq y)$
3. $\forall x \quad (\neg (x \doteq 0) \rightarrow \exists y \ (Sy \doteq x))$

1.
$$\forall x \quad (\neg(\mathsf{S} x \doteq 0))$$

2. $\forall x \forall y \quad (\mathsf{S} x \doteq \mathsf{S} y \to x \doteq y)$
3. $\forall x \quad (\neg(x \doteq 0) \to \exists y \; (\mathsf{S} y \doteq x))$

4. for every WFF $\varphi(x)$ with a single free variable *x*, include the axiom $\varphi(0) \land \forall x (\varphi(x) \to \varphi(Sx)) \to \forall y \varphi(y)$

1.
$$\forall x \quad (\neg (Sx \doteq 0))$$

2. $\forall x \forall y \quad (Sx \doteq Sy \rightarrow x \doteq y)$
3. $\forall x \quad (\neg (x \doteq 0) \rightarrow \exists y (Sy \doteq x))$

4. for every WFF $\varphi(x)$ with a single free variable *x*, include the axiom $\varphi(0) \land \forall x (\varphi(x) \to \varphi(Sx)) \to \forall y \varphi(y)$

with addition:

5.
$$\forall x \quad (x+0 \doteq x)$$

6. $\forall x \forall y \quad (x+Sy \doteq S(x+y))$

1.
$$\forall x \quad (\neg (Sx \doteq 0))$$

2. $\forall x \forall y \quad (Sx \doteq Sy \rightarrow x \doteq y)$
3. $\forall x \quad (\neg (x \doteq 0) \rightarrow \exists y (Sy \doteq x))$

4. for every WFF $\varphi(x)$ with a single free variable *x*, include the axiom $\varphi(0) \land \forall x (\varphi(x) \to \varphi(Sx)) \to \forall y \varphi(y)$

with addition:

5.
$$\forall x \quad (x+0 \doteq x)$$

6.
$$\forall x \forall y \quad (x + Sy \doteq S(x + y))$$

with addition and multiplication:

7.
$$\forall x \quad (x \times 0 \doteq 0)$$

8. $\forall x \forall y \quad (x \times S y \doteq (x \times y) + x)$

linear integer arithmetic (LIA)

1.
$$\mathcal{P} = \{ \leqslant \}, \quad \mathcal{F} = \{+, -\}, \quad \mathcal{C} = \{0, 1\}.$$

- 2. include all axioms for "+" and "-".
- 3. atomic WFF's are all of the form

$$a_1x_1 + a_2x_2 + \cdots + a_nx_n \bowtie b$$

where $\bowtie \in \{\leq, <, \geq, >, \doteq, \neq\}$ and a_1, \ldots, a_n, b are integers.

(THIS PAGE INTENTIONALLY LEFT BLANK)