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equivalence relations

1. ∀x (x ∼ x) reflexivity

2. ∀x ∀y (x ∼ y→ y ∼ x) symmetry

3. ∀x ∀y ∀z (x ∼ y ∧ y ∼ z→ x ∼ z) transitivity

Assaf Kfoury, CS 511, Fall 2018, Handout 18 page 2 of 20



equality with uninterpreted functions (EUF)

1. ∀x (x .
= x) reflexivity

2. ∀x ∀y (x .
= y→ y .

= x) symmetry

3. ∀x ∀y ∀z (x .
= y ∧ y .

= z→ x .
= z) transitivity

The three preceding axioms are identical to those in the theory of
equivalence relations (preceding page).

4. for every function symbol f ∈ F of arity n > 1:

∀x1 · · · ∀xn ∀y1 · · · ∀yn( ∧
16i6n

xi
.
= yi

)
→ f (x1, . . . , xn)

.
= f (y1, . . . , yn) congruence
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orders

1. ∀x ∀y ∀z
(
x 6 y ∧ y 6 z→ x 6 z

)
transitive

2. ∀x
(
x 6 x

)
reflexive

3. ∀x ∀y
(
x 6 y ∧ y 6 x→ x .

= y
)

anti-symmetric

(1), (2) and (3) make “6” a partial order, which may not be total

(what is an example of a partial order which is not total?)

4. ∀x ∀y
(
x 6 y ∨ y 6 x

)
total (or linear) ordering

5. ∀x ∀z
(

x < z→ ∃y
(
x < y ∧ y < z

))
dense ordering

(where “x < y” abbreviates “(x 6 y) ∧ ¬(x .
= y)”)

6. ∃x ∀y
(
x 6 y

)
smallest element

7. ∃x ∀y
(
y 6 x

)
largest element

can we express a well-ordering in first-order logic? i.e., “every
non-empty subset has a smallest element”?
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algebras with two binary operations

1. ∀x ∀y ∀z
(

x⊕ (y⊕ z) .
= (x⊕ y)⊕ z

)
⊕ is associative

2. ∀x ∀y
(
x⊕ y .

= y⊕ x
)

⊕ is commutative

3. ∀x ∀y ∀z
(

x⊗ (y⊕ z) .
= (x⊗ y)⊕ (x⊗ z)

)
⊗ distributes over ⊕

Assaf Kfoury, CS 511, Fall 2018, Handout 18 page 9 of 20



groups

1. ∀x
(
e · x .

= x ∧ x · e .
= x
)

identity (or neutral element)

2. ∀x ∃y
(
x · y .

= e ∧ y · x .
= e
)

inverse

3. ∀x ∀y ∀z
(
(x · y) · z .

= x · (y · z)
)

associative

three preceding WFF’s are true in every group,

does the following WFF ϕ follows from the preceding three:
ϕ , ∀x ∀y ∀z

(
x · y .

= e ∧ x · z .
= e→ y .

= z
)

??

some special cases of groups:

4. ∀x ∀y
(
x · y .

= y · x
)

abelian group

5. ∀x
(
x · x .

= e→ x .
= e
)
, torsion-free group

∀x
(
x · x · x .

= e→ x .
= e
)
,

∀x
(
x · x · x · x .

= e→ x .
= e
)
, . . .
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graphs

1. ∀x ∀y
(
R(x, y) → R(y, x)

)
the graph is undirected

2. ∀x
(
¬R(x, x)

)
there are no “loops” in the graph

assume there are two domains:
the domain V of vertices, the domain R of real numbers

assume there is a capacity function: c : V × V → R

a flow is a function f : V × V → R

3. ∀f ∀x ∀y
(
f (x, y) 6 c(x, y)

)
is (3) a first-order WFF?
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successor function over the natural numbers

1. ∀x
(
¬(S x .

= 0)
)

2. ∀x ∀y (S x .
= S y→ x .

= y)

3. ∀x
(
¬(x .

= 0) → ∃y (S y .
= x)

)

4. for every WFF ϕ(x) with a single free variable x, include the axiom
ϕ(0) ∧ ∀x

(
ϕ(x)→ ϕ(S x)

)
→ ∀y ϕ(y)

with addition:

5. ∀x (x + 0 .
= x)

6. ∀x ∀y
(
x + S y .

= S (x + y)
)

with addition and multiplication:

7. ∀x (x× 0 .
= 0)

8. ∀x ∀y
(
x× S y .

= (x× y) + x
)
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linear integer arithmetic (LIA)

1. P = {6}, F = {+,−}, C = {0, 1}.
2. include all axioms for “+” and “−”.

3. atomic WFF’s are all of the form

a1x1 + a2x2 + · · ·+ anxn ./ b

where ./ ∈ {6, <,>, >,
.
=, 6 .=} and a1, . . . , an, b are integers.
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