# CS 511, Fall 2018, Handout 19 First-Order Logic: Prenex Normal Form and Skolemization

Assaf Kfoury

10 October 2018

Assaf Kfoury, CS 511, Fall 2018, Handout 19

### more on quantifier equivalences

Lemma. For any string of quantifiers

$$\overrightarrow{Qx} \triangleq Q_1 x_1 Q_2 x_2 \cdots Q_n x_n$$

where  $Q_1, Q_2, \ldots, Q_n \in \{\forall, \exists\}$  with  $n \ge 0$ , and for any WFF's  $\varphi$  and  $\psi$ :

Proof. Similar to proof of Theorem 2.13 in LCS, page 117.

### prenex normal form

#### Theorem.

For every WFF  $\varphi$  there is an equivalent WFF  $\psi$  with the same

free variables where all quantifiers appear at the beginning.

 $\psi$  is called the prenex normal form of  $\varphi.$ 

**Proof.** By induction on the structure of  $\varphi$ .

- If  $\varphi$  is atomic, then  $\psi \triangleq \varphi$ .
- ▶ If  $\varphi$  is  $Qx \varphi_0$  where  $Q \in \{\forall, \exists\}$  and  $\psi_0$  is a PNF of  $\varphi_0$ , then  $\psi \triangleq Qx \psi_0$ .
- If φ is ¬φ₀ and ψ₀ is a PNF of φ₀, then use the two first cases in the lemma (on preceding slide) repeatedly, to obtain ψ.
- If φ is φ<sub>0</sub> ∨ φ<sub>1</sub>, and ψ<sub>0</sub> and ψ<sub>1</sub> are PNF's of φ<sub>0</sub> and φ<sub>1</sub>, then use the four last cases in the **lemma** repeatedly, to obtain ψ.

# prenex normal form (continued)



 $\forall x \Big( \exists y \big( \neg x \lor y \lor \neg v \big) \to \exists z \big( (x \to z) \lor \neg v \big) \Big) \qquad \forall x \Big( \exists y \big( \neg x \lor y \lor \neg v \big) \Big)$ 

### skolemization

**Lemma.** A first-order sentence  $\varphi$  of the form

 $\varphi \triangleq \forall x_1 \cdots \forall x_n \exists y \psi$ 

over vocabulary/signature  $\Sigma$  is equisatisfiable with the sentence  $\varphi'$ 

$$\varphi' \triangleq \forall x_1 \cdots \forall x_n \, \psi[y := f(x_1, \dots, x_n)]$$

where *f* is a fresh *n*-ary function symbol not in  $\Sigma$ .

#### Proof.

Let  $\mathcal{M}$  be a model for  $\Sigma$  and  $\mathcal{M}' \triangleq (\mathcal{M}, f^{\mathcal{M}'})$  a model for  $\Sigma \cup \{f\}$ . If  $\mathcal{M}' \models \varphi'$  then  $\mathcal{M} \models \varphi$ . Hence, if  $\varphi'$  is satisfiable, then so is  $\varphi$ .

Conversely, let  $\mathcal{M} \models \varphi$ . Construct a model  $\mathcal{M}'$  for  $\Sigma \cup \{f\}$  by expanding  $\mathcal{M}$  so that for every  $a_1, \ldots, a_n \in A$ , the function  $f^{\mathcal{M}'}$  maps  $(a_1, \ldots, a_n)$  to b where  $\mathcal{M}, a_1, \ldots, a_n, b \models \psi$ . Hence,  $\mathcal{M}' \models \varphi'$ . Hence, if  $\varphi$  is satisfiable, then so is  $\varphi'$ .

## skolemization (continued)

#### Theorem.

If  $\varphi$  is a first-order sentence over the vocabulary/signature  $\Sigma$ , then there is a **universal** first-order sentence  $\varphi'$  over an expanded vocabulary/signature  $\Sigma'$  obtained by adding new function symbols such that  $\varphi$  and  $\varphi'$  are equisatisfiable.

**Proof.** By repeated use of the **lemma** (on the preceding slide).

**Remark.** The theorem does NOT claim that  $\varphi$  and  $\varphi'$  are equivalent, only that they are equisatisfiable.

However, it will be always the case that  $\vdash \varphi' \rightarrow \varphi$ , but not always that  $\vdash \varphi \rightarrow \varphi'$ .

### exercise on skolemization

### Exercise:

Let  $\varphi(x, y)$  be an atomic WFF with free variables x and y, and f a unary function symbol not appearing in  $\varphi$ .

1. Show that the sentence  $\forall x \varphi(x, f(x)) \rightarrow \forall x \exists y \varphi(x, y)$  is semantically valid, *i.e.*, the following sequent is formally derivable:

 $\vdash \forall x \, \varphi(x, f(x)) \to \forall x \exists y \, \varphi(x, y)$ 

*Hint*: Use any of the available methods, *i.e.*, try to find a formal proof or try a semantic approach to show  $\models \forall x \varphi(x, f(x)) \rightarrow \forall x \exists y \varphi(x, y)$  and then invoke the completeness of the proof rules.

2. Show that the sentence  $\forall x \exists y \varphi(x, y) \rightarrow \forall x \varphi(x, f(x))$  is NOT semanticalle valid, *i.e.*, the following sequent is NOT derivable:

 $\vdash \forall x \exists y \, \varphi(x, y) \to \forall x \, \varphi(x, f(x))$ 

*Hint*: Try a semantic approach, *i.e.*, define an appropriate  $\varphi$  and a model where the left-hand side of " $\rightarrow$ " is true but the right-hand side of " $\rightarrow$ " is false, and then invoke the completeness of the proof rules.

### (THIS PAGE INTENTIONALLY LEFT BLANK)