CS 511, Fall 2018, Handout 19

First-Order Logic: Prenex Normal Form and Skolemization

Assaf Kfoury

10 October 2018

more on quantifier equivalences

Lemma. For any string of quantifiers

$$
\overrightarrow{Q x} \triangleq Q_{1} x_{1} Q_{2} x_{2} \cdots Q_{n} x_{n}
$$

where $Q_{1}, Q_{2}, \ldots, Q_{n} \in\{\forall, \exists\}$ with $n \geqslant 0$, and for any WFF's φ and ψ :

$$
\begin{aligned}
& \quad \overrightarrow{Q x} \neg \forall y \varphi \leftrightarrow \overrightarrow{Q x} \exists y \neg \varphi \\
& -\overrightarrow{Q x} \neg \exists y \varphi \leftrightarrow \overrightarrow{Q x} \forall y \neg \varphi \\
& -\quad \overrightarrow{Q x}(\forall y \varphi \vee \psi) \leftrightarrow \overrightarrow{Q x} \forall z(\varphi[y:=z] \vee \psi) \\
& -\quad \overrightarrow{Q x}(\varphi \vee \forall y \psi) \leftrightarrow \overrightarrow{Q x} \forall z(\varphi \vee \psi[y:=z]) \\
& -\quad \overrightarrow{Q x}(\varphi \vee \exists y \psi) \leftrightarrow \overrightarrow{Q x} \exists z(\varphi \vee \psi[y:=z])
\end{aligned}
$$

where z is a fresh variable occurring nowhere else.
Proof. Similar to proof of Theorem 2.13 in LCS, page 117.

prenex normal form

Theorem.

For every WFF φ there is an equivalent WFF ψ with the same
free variables where all quantifiers appear at the beginning.

ψ is called the prenex normal form of φ.

Proof. By induction on the structure of φ.

- If φ is atomic, then $\psi \triangleq \varphi$.
- If φ is $Q x \varphi_{0}$ where $Q \in\{\forall, \exists\}$ and ψ_{0} is a PNF of φ_{0}, then $\psi \triangleq Q x \psi_{0}$.
- If φ is $\neg \varphi_{0}$ and ψ_{0} is a PNF of φ_{0}, then use the two first cases in the lemma (on preceding slide) repeatedly, to obtain ψ.
- If φ is $\varphi_{0} \vee \varphi_{1}$, and ψ_{0} and ψ_{1} are PNF's of φ_{0} and φ_{1}, then use the four last cases in the lemma repeatedly, to obtain ψ.

prenex normal form (continued)

$\forall x(\exists y(\neg x \vee y \vee \neg v) \rightarrow \exists z((x \rightarrow z) \vee \neg v)) \quad \forall x(\exists y(\neg x \vee y \vee \neg v))$
prenex form

$\forall x(\exists y(\neg x \vee y \vee \neg v) \rightarrow \exists z((x \rightarrow z) \vee \neg v))$

skolemization

Lemma. A first-order sentence φ of the form

$$
\varphi \triangleq \forall x_{1} \cdots \forall x_{n} \exists y \psi
$$

over vocabulary/signature Σ is equisatisfiable with the sentence φ^{\prime}

$$
\varphi^{\prime} \triangleq \forall x_{1} \ldots \forall x_{n} \psi\left[y:=f\left(x_{1}, \ldots, x_{n}\right)\right]
$$

where f is a fresh n-ary function symbol not in Σ.

Proof.

Let \mathcal{M} be a model for Σ and $\mathcal{M}^{\prime} \triangleq\left(\mathcal{M}, f^{\mathcal{M}^{\prime}}\right)$ a model for $\Sigma \cup\{f\}$. If $\mathcal{M}^{\prime} \vDash \varphi^{\prime}$ then $\mathcal{M} \models \varphi$. Hence, if φ^{\prime} is satisfiable, then so is φ.

Conversely, let $\mathcal{M} \models \varphi$. Construct a model \mathcal{M}^{\prime} for $\Sigma \cup\{f\}$ by expanding \mathcal{M} so that for every $a_{1}, \ldots, a_{n} \in A$, the function $f^{\mathcal{M}^{\prime}} \operatorname{maps}\left(a_{1}, \ldots, a_{n}\right)$ to b where $\mathcal{M}, a_{1}, \ldots, a_{n}, b \models \psi$. Hence, $\mathcal{M}^{\prime} \models \varphi^{\prime}$. Hence, if φ is satisfiable, then so is φ^{\prime}.

skolemization (continued)

Theorem.

If φ is a first-order sentence over the vocabulary/signature Σ, then there is a universal first-order sentence φ^{\prime} over an expanded vocabulary/signature Σ^{\prime} obtained by adding new function symbols such that φ and φ^{\prime} are equisatisfiable.

Proof. By repeated use of the lemma (on the preceding slide).

Remark. The theorem does NOT claim that φ and φ^{\prime} are equivalent, only that they are equisatisfiable .

However, it will be always the case that $\vdash \varphi^{\prime} \rightarrow \varphi$, but not always that $\vdash \varphi \rightarrow \varphi^{\prime}$.

exercise on skolemization

Exercise:

Let $\varphi(x, y)$ be an atomic WFF with free variables x and y, and f a unary function symbol not appearing in φ.

1. Show that the sentence $\forall x \varphi(x, f(x)) \rightarrow \forall x \exists y \varphi(x, y)$ is semantically valid, i.e., the following sequent is formally derivable:

$$
\vdash \forall x \varphi(x, f(x)) \rightarrow \forall x \exists y \varphi(x, y)
$$

Hint: Use any of the available methods, i.e., try to find a formal proof or try a semantic approach to show $\models \forall x \varphi(x, f(x)) \rightarrow \forall x \exists y \varphi(x, y)$ and then invoke the completeness of the proof rules.
2. Show that the sentence $\forall x \exists y \varphi(x, y) \rightarrow \forall x \varphi(x, f(x))$ is NOT semanticalle valid, i.e., the following sequent is NOT derivable:

$$
\vdash \forall x \exists y \varphi(x, y) \rightarrow \forall x \varphi(x, f(x))
$$

Hint: Try a semantic approach, i.e., define an appropriate φ and a model where the left-hand side of " \rightarrow " is true but the right-hand side of " \rightarrow " is false, and then invoke the completeness of the proof rules.

(THIS PAGE INTENTIONALLY LEFT BLANK)

