CS 511, Fall 2018, Handout 20

Examples of Relational/Algebraic Structures: Posets, Lattices, Heyting Algebras, Boolean Algebras, and more

Assaf Kfoury

October 10, 2018
(adjusted on October 15, 2018)

Algebraic Structures: definitions and examples

- An algebraic structure \mathcal{A}, or just an algebra \mathcal{A}, is a set A, called the carrier set or underlying set of \mathcal{A}, with one or more operations on the carrier A. (Search the Web, here and here, for more details.)
- Examples of algebraic structures:
- $(\mathbb{Z},+, \cdot)$
the set of integers with binary operations addition "+" and multiplication "•",
- $(\mathbb{N}$, succ, pred, 0,1$)$
the set of natural numbers with unary operations, "succ" and "pred", and nullary operations, " 0 " and " 1 ",
- $(T$, node $, \mathrm{Lt}, \mathrm{Rt})$ where T is the least set such that:

$$
T \supseteq\{a, b, c\} \cup\left\{\left\langle t_{1} t_{2}\right\rangle \mid t_{1}, t_{2} \in T\right\}
$$

with one binary operation "node" and two unary operations "Lt" and "Rt", defined by:

Algebraic Structures: definitions and examples

$$
\begin{array}{ll}
\text { node }: T \times T \rightarrow T & \text { such that node }\left(t_{1}, t_{2}\right)
\end{array}=\left\langle t_{1} t_{2}\right\rangle, \begin{array}{ll}
\mathrm{Lt}: T \rightarrow T & \text { such that } \operatorname{Lt}(t)
\end{array} \begin{array}{ll}
t_{1} & \text { if } t=\left\langle t_{1} t_{2}\right\rangle, \\
\text { undefined } & \text { otherwise. }
\end{array}, \begin{array}{ll}
\text { Rt }: T \rightarrow T & \text { such that } \operatorname{Rt}(t) \\
t_{2} & \text { if } t=\left\langle t_{1} t_{2}\right\rangle, \\
\text { undefined } & \text { otherwise. }
\end{array}
$$

- Sometimes an algebraic structure includes two (or more) carriers, together with operations between them, in which case we say the algebraic structure is two-sorted (or multi-sorted).
- Examples of two-sorted algebraic structures:
- $(\mathbb{Z}, \mathbb{B}, \leqslant,+, \cdot) \quad$ where $\mathbb{B}=\{\mathbf{F}, \mathbf{T}\}$ and $\leqslant: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{B}$.
- (T, \mathbb{N}, node, $L \mathrm{Lt}, \mathrm{Rt},| |$, height) where T is defined on the previous slide, with $\|: T \rightarrow \mathbb{N}$ and height $: T \rightarrow \mathbb{N}$.

Algebraic Structures: definitions and examples

- For a two-sorted structure such as $\mathcal{M} \triangleq(T, \mathbb{N}$, node, $\mathrm{Lt}, \mathrm{Rt},| |$, height $)$, we need to introduce two unary relation symbols, say R_{1} and R_{2}, whose interpretations are the domains T and \mathbb{N} :

$$
R_{1}^{\mathcal{M}}=T \quad \text { and } \quad R_{2}^{\mathcal{M}}=\mathbb{N}
$$

- \mathcal{M} satisfies the first-order sentence:

$$
\left(\forall x . R_{1}(x) \vee R_{2}(x)\right) \wedge \neg\left(\exists x . R_{1}(x) \wedge R_{2}(x)\right)
$$

- To assert that an element of the first domain T satisfies a wff $\varphi(x)$ with one free variable x, we write:

$$
\exists x . R_{1}(x) \wedge \varphi(x)
$$

(The book [LCS], Chapter 2, does not deal with multi-sorted structures.)

Algebraic Structures: definitions and examples

- Sometimes in a two-sorted algebraic structure, such as $(\mathbb{Z}, \mathbb{B}, \leqslant,+, \cdot)$ with the Boolean carrier \mathbb{B} one of the two sorts, we can omit \mathbb{B} and simply write $(\mathbb{Z}, \leqslant,+, \cdot)$.
- This assumes that it is clear to the reader that " \leqslant " is a function from $\mathbb{Z} \times \mathbb{Z}$ to \mathbb{B}, i.e., " \leqslant " is a binary relation (rather than a binary function or operation). As a binary relation, we can write:
$\leqslant \subseteq \mathbb{Z} \times \mathbb{Z}$.
- Strictly speaking, a structure such as $(\mathbb{Z}, \leqslant,+, \cdot)$, which now includes operations as well as relations, is called a relational structure rather than just an algebraic structure.
- But the transition from algebraic structures to more general relational structures is not demarcated sharply.
- In particular, if a struture \mathcal{A} includes one or two relations with standard meanings (such as " \leqslant "), we can continue to call \mathcal{A} an algebraic structure.

Posets: definitions and examples

- A partially ordered set, or poset for short, is a set P with a partial ordering \unlhd on P, i.e., for all $a, b, c \in P$, the ordering \unlhd satisfies:

$$
\begin{array}{ll}
a \unlhd a & \text { " } \unlhd \text { is reflexive" } \\
(a \unlhd b \text { and } b \unlhd a) \text { imply } a=b & \text { " } \unlhd \text { is anti-symmetric" } \\
(a \unlhd b \text { and } b \unlhd c) \text { imply } a \unlhd c & \text { " } \unlhd \text { is transitive" }
\end{array}
$$

The ordering \unlhd is total if it also satisfies for all $a, b \in P$:

$$
(a \unlhd b) \text { or }(b \unlhd a)
$$

- Examples of posets:
(1) $\quad\left(2^{A}, \unlhd\right)$ where A is a non-empty set and \unlhd is \subseteq,
(2) $\quad(\mathbb{N}-\{0\}, \unlhd)$ where $m \unlhd n$ iff " m divides n ",
(3) $\quad(\mathbb{N}, \unlhd)$ where \unlhd is the usual ordering \leqslant.

In (1) and (2), \unlhd is not total; in (3), \unlhd is total.

Lattices: definitions and examples

- An lattice \mathcal{L} is an algebraic structure $(L, \unlhd, \vee, \wedge)$ where \vee and \wedge are binary operations, and \unlhd is a binary relation, such that:
- (L, \unlhd) is a poset,
- for all $a, b \in L$, the least upper bound of a and b in the ordering \unlhd
- exists,
- is unique,
- and is the result of the operation " $a \vee b$ ",
- for all $a, b \in L$, the greatest lower bound of a and b in \unlhd
- exists,
- is unique,
- and is the result of the operation " $a \wedge b$ ".
- Examples of lattices:
- $\left(2^{A}, \unlhd, \vee, \wedge\right) \quad$ where \unlhd is \subseteq, \vee is \cup, \wedge is \cap
- $(\mathbb{N}-\{0\}, \unlhd, \vee, \wedge)$
where $m \unlhd n$ iff " m divides n ", \vee is "lcm", \wedge is " $g c d$ "

Distributive Lattices: definitions and examples

- A lattice $\mathcal{L}=(L, \unlhd, \vee, \wedge)$ is a distributive lattice if for all $a, b, c \in L$, the following equations - also called axioms or equational axioms - are satisfied:

$$
\begin{array}{ll}
a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c) & " \wedge " \text { distributes over " } \vee " \\
a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c) & \text { " } \vee \text { " distributes over " } \wedge "
\end{array}
$$

- Example of a distributive lattice:

$$
\left(2^{A}, \subseteq, \cup, \cap\right)
$$

- Is the following an example of a distributive lattice?

$$
(\mathbb{N}-\{0\}, " \ldots \text { divides _-", lcm, gcd })
$$

- For more details on posets and lattices, go to the Web: here (Hasse diagrams), here (distributive lattices), and here.

Bounded Lattices: definitions and examples

- A bounded lattice is an algebraic structure of the form

$$
\mathcal{L}=\left(L, \unlhd, \vee, \wedge, \frac{\perp}{\Uparrow}, \top_{\Uparrow}^{\top}\right)
$$

where \perp and \top are nullary (or 0-ary) operations on L (or, equivalently, elements in L) such that:

1. $\mathcal{L}=(L, \unlhd, \vee, \wedge)$ is a lattice,
2. $\perp \unlhd a$ or, equivalently, $\perp \wedge a=\perp$ for every $a \in L$,
3. $a \unlhd \top$ or, equivalently, $a \vee \top=\top$ for every $a \in L$.

The elements \perp and T are uniquely defined. \perp is the minimum element, and T is the maximum element, of the bounded lattice.

- Example of a bounded lattice: $\left(2^{A}, \subseteq, \cup, \cap, \varnothing, A\right)$
- Example a lattice with a minimum, but no maximum:

$$
(\mathbb{N}-\{0\}, "-- \text { divides _-", lcm, gcd, } \underset{\Uparrow}{1})
$$

Bounded Lattices: definitions and examples

- Let $\mathcal{L}=(L, \unlhd, \vee, \wedge, \perp, \top)$ be a bounded lattice. An element $a \in L$ has a complement $b \in L$ iff:

$$
a \wedge b=\perp \quad \text { and } \quad a \vee b=\top
$$

FACT: In a bounded distributive lattice, complements are uniquely defined,i.e., an element $a \in L$ cannot have more than one complement $b \in L$.

Proof. Exercise.

Complemented Lattices: definitions and examples

- A complemented lattice is a bounded distributive lattice
$\mathcal{L}=(L, \unlhd, \vee, \wedge, \perp, \top)$ where every element has a complement.
- Example of a complemented lattice: $\left(2^{A}, \subseteq, \cup, \cap, \varnothing, A\right)$
- Again, for more details various kinds of lattices, go to the Web: here (Hasse diagrams), here (distributive lattices), here (lattices).

Boolean Algebras: definitions and examples

- A complemented lattice $\mathcal{L}=(L, \unlhd, \vee, \wedge, \perp, \top)$ is almost a Boolean algebra, but not quite!

What is missing is an additional operation on L to map an element $a \in L$ to its complement.

- A first definition of a Boolean algebra:

$$
\mathcal{L}=(L, \unlhd, \vee, \wedge, \perp, \top, \neg)
$$

where:

1. $\mathcal{L}=(L, \unlhd, \vee, \wedge, \perp, T)$ is a complemented lattice,
2. The new operation " \neg " is unary and maps every $a \in L$ to its complement, i.e.:

$$
a \wedge(\neg a)=\perp \quad \text { and } \quad a \vee(\neg a)=\top
$$

Boolean Algebras: definitions and examples

- A second definition of a Boolean algebra
(easier to compare with Heyting algebras later) :

$$
\mathcal{L}=(L, \unlhd, \vee, \wedge, \perp, \top, \underset{\Uparrow}{\rightarrow})
$$

where:

1. $\mathcal{L}=(L, \unlhd, \vee, \wedge, \perp, \top)$ is a complemented lattice,
2. The new operation " \rightarrow " is binary such that $(a \rightarrow \perp)$ is the complement of a, for every every $a \in L$.

- FACT: The two preceding definitions of Boolean algebras are equivalent because we can define " \rightarrow " in terms of $\{\vee, \neg\}$:

$$
a \rightarrow b:=(\neg a) \vee b
$$

as well as define " \neg " in terms of $\{\rightarrow, \perp\}$:

$$
\neg a:=a \rightarrow \perp
$$

Boolean Algebras: definitions and examples

- Examples of Boolean algebras:
- For an arbitrary non-empty set A :

$$
\left(2^{A}, \subseteq, \cup, \cap, \varnothing, A,-\right)
$$

where $\bar{X}=A-X$ for every $X \subseteq A$.

- The standard 2-element Boolean algebra:

$$
(\{0,1\}, \leqslant, \vee, \wedge, 0,1, \neg) \quad \text { or } \quad(\{0,1\}, \leqslant, \vee, \wedge, 0,1, \rightarrow)
$$

where we write " 0 " for \mathbf{F} and " 1 " for \mathbf{T}.

Heyting Algebras: definitions and examples

- A Heyting algebra is an algebraic structure of the form

$$
\mathcal{L}=(L, \unlhd, \vee, \wedge, \perp, \top, \rightarrow)
$$

where:

- $\mathcal{L}=(L, \unlhd, \vee, \wedge, \perp, \top)$ is a bounded distributive lattice - not necessarily a complemented lattice,
- The new operation " \rightarrow " is binary and satisfies the equations:

$$
\begin{array}{ll}
\text { 1. } & a \rightarrow a=\top \\
\text { 2. } & a \wedge(a \rightarrow b)=a \wedge b \\
\text { 3. } & a \rightarrow(b \wedge c)=(a \rightarrow b) \wedge(a \rightarrow c) \\
\text { 4. } & b \leqslant a \rightarrow b
\end{array}
$$

FACT: The preceding equations uniquely define the operation " \rightarrow ". Proof. Exercise.

- FACT: Every Boolean algebra is a Heyting algebra. Proof. Exercise.

(THIS PAGE INTENTIONALLY LEFT BLANK)

