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Algebraic Structures: definitions and examples

I An algebraic structure A, or just an algebra A, is a set A, called
the carrier set or underlying set of A, with one or more operations
on the carrier A. (Search the Web, here and here, for more details.)

I Examples of algebraic structures:

I (Z,+, ·)
the set of integers with binary operations addition “+” and multiplication “·”,

I (N, succ, pred, 0, 1)
the set of natural numbers with unary operations, “succ” and “pred”,
and nullary operations, “0” and “1”,

I (T, node, Lt,Rt) where T is the least set such that:

T ⊇ {a, b, c} ∪ { 〈t1 t2〉 | t1, t2 ∈ T }

with one binary operation “node” and two unary operations “Lt” and “Rt”,
defined by:
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Algebraic Structures: definitions and examples

node : T × T → T such that node(t1, t2) = 〈t1 t2〉

Lt : T → T such that Lt(t) =

{
t1 if t = 〈t1 t2〉,
undefined otherwise.

Rt : T → T such that Rt(t) =

{
t2 if t = 〈t1 t2〉,
undefined otherwise.

I Sometimes an algebraic structure includes two (or more) carriers,
together with operations between them, in which case we say the
algebraic structure is two-sorted (or multi-sorted).

I Examples of two-sorted algebraic structures:

I (Z,B,6,+, ·) where B = {F, T} and 6 : Z× Z→ B.

I (T,N, node, Lt,Rt,
∣∣ ∣∣, height) where T is defined on the previous slide,

with
∣∣ ∣∣ : T → N and height : T → N.

Assaf Kfoury, CS 511, Fall 2018, Handout 20 page 3 of 16



Algebraic Structures: definitions and examples

I For a two-sorted structure such asM , (T,N, node, Lt,Rt,
∣∣ ∣∣, height),

we need to introduce two unary relation symbols, say R1 and R2, whose
interpretations are the domains T and N:

RM
1 = T and RM

2 = N

I M satisfies the first-order sentence:(
∀x. R1(x) ∨ R2(x)

)
∧ ¬

(
∃x. R1(x) ∧ R2(x)

)
I To assert that an element of the first domain T satisfies a wff ϕ(x) with

one free variable x, we write:

∃x. R1(x) ∧ ϕ(x)

(The book [LCS], Chapter 2, does not deal with multi-sorted structures.)
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Algebraic Structures: definitions and examples

I Sometimes in a two-sorted algebraic structure, such as
(Z,B,6,+, ·) with the Boolean carrier B one of the two sorts, we
can omit B and simply write (Z,6,+, ·).

I This assumes that it is clear to the reader that “6” is a function from
Z× Z to B, i.e., “6” is a binary relation (rather than a binary
function or operation). As a binary relation, we can write:
6 ⊆ Z× Z.

I Strictly speaking, a structure such as (Z,6,+, ·), which now
includes operations as well as relations, is called a relational
structure rather than just an algebraic structure.

I But the transition from algebraic structures to more general
relational structures is not demarcated sharply.

I In particular, if a struture A includes one or two relations with
standard meanings (such as “6”), we can continue to call A an
algebraic structure.

Assaf Kfoury, CS 511, Fall 2018, Handout 20 page 5 of 16



Posets: definitions and examples

I A partially ordered set, or poset for short, is a set P with a partial
ordering E on P, i.e., for all a, b, c ∈ P, the ordering E satisfies:

a E a “ E is reflexive”(
a E b and b E a

)
imply a = b “ E is anti-symmetric”(

a E b and b E c
)

imply a E c “ E is transitive”

The ordering E is total if it also satisfies for all a, b ∈ P:

(a E b) or (b E a)

I Examples of posets:

(1) (2A, E ) where A is a non-empty set and E is ⊆,
(2) (N− {0}, E ) where m E n iff “m divides n”,
(3) (N, E ) where E is the usual ordering 6.

In (1) and (2), E is not total; in (3), E is total.
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Lattices: definitions and examples

I An lattice L is an algebraic structure (L, E ,∨,∧) where ∨ and ∧
are binary operations, and E is a binary relation, such that:
I (L, E ) is a poset,
I for all a, b ∈ L, the least upper bound of a and b in the ordering E

I exists,
I is unique,
I and is the result of the operation “a ∨ b”,

I for all a, b ∈ L, the greatest lower bound of a and b in E
I exists,
I is unique,
I and is the result of the operation “a ∧ b”.

I Examples of lattices:

I (2A, E ,∨,∧) where E is ⊆, ∨ is ∪, ∧ is ∩

I (N− {0}, E ,∨,∧)
where m E n iff “m divides n”, ∨ is “lcm”, ∧ is “gcd”
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Distributive Lattices: definitions and examples

I A lattice L = (L, E ,∨,∧) is a distributive lattice if for all
a, b, c ∈ L, the following equations – also called axioms or
equational axioms – are satisfied:

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) “∧” distributes over “∨”

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) “∨” distributes over “∧”

I Example of a distributive lattice:

(2A,⊆,∪,∩)

I Is the following an example of a distributive lattice?

(N− {0}, “ divides ”, lcm, gcd)

I For more details on posets and lattices, go to the Web:
here (Hasse diagrams), here (distributive lattices), and here.
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Bounded Lattices: definitions and examples

I A bounded lattice is an algebraic structure of the form

L = (L, E ,∨,∧,⊥
⇑
,>
⇑
)

where ⊥ and > are nullary (or 0-ary) operations on L (or,
equivalently, elements in L) such that:

1. L = (L, E ,∨,∧) is a lattice,

2. ⊥ E a or, equivalently, ⊥ ∧ a = ⊥ for every a ∈ L,

3. a E > or, equivalently, a ∨ > = > for every a ∈ L.

The elements ⊥ and > are uniquely defined. ⊥ is the minimum
element, and > is the maximum element, of the bounded lattice.

I Example of a bounded lattice: (2A,⊆,∪,∩,∅
⇑
, A
⇑
)

I Example a lattice with a minimum, but no maximum:

(N− {0}, “ divides ”, lcm, gcd, 1
⇑
)
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Bounded Lattices: definitions and examples

I Let L = (L, E ,∨,∧,⊥,>) be a bounded lattice. An element
a ∈ L has a complement b ∈ L iff:

a ∧ b = ⊥ and a ∨ b = >

FACT: In a bounded distributive lattice, complements are
uniquely defined,i.e., an element a ∈ L cannot have more than one
complement b ∈ L.

Proof. Exercise.
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Complemented Lattices: definitions and examples

I A complemented lattice is a bounded distributive lattice
L = (L, E ,∨,∧,⊥,>) where every element has a complement.

I Example of a complemented lattice: (2A,⊆,∪,∩,∅,A)

I Again, for more details various kinds of lattices, go to the Web:
here (Hasse diagrams), here (distributive lattices), here (lattices).
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Boolean Algebras: definitions and examples

I A complemented lattice L = (L, E ,∨,∧,⊥,>) is almost a
Boolean algebra, but not quite!

What is missing is an additional operation on L to map an element
a ∈ L to its complement.

I A first definition of a Boolean algebra:

L = (L, E ,∨,∧,⊥,>,¬
⇑
)

where:

1. L = (L, E ,∨,∧,⊥,>) is a complemented lattice,

2. The new operation “¬” is unary and maps every a ∈ L to its
complement, i.e.:

a ∧ (¬a) = ⊥ and a ∨ (¬a) = >
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Boolean Algebras: definitions and examples

I A second definition of a Boolean algebra
(easier to compare with Heyting algebras later) :

L = (L, E ,∨,∧,⊥,>,→
⇑
)

where:
1. L = (L, E ,∨,∧,⊥,>) is a complemented lattice,

2. The new operation “→” is binary such that (a→ ⊥) is the
complement of a, for every every a ∈ L.

I FACT: The two preceding definitions of Boolean algebras are
equivalent because we can define “→” in terms of {∨,¬}:

a→ b := (¬a) ∨ b

as well as define “¬” in terms of {→,⊥}:

¬a := a→ ⊥
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Boolean Algebras: definitions and examples

I Examples of Boolean algebras:

I For an arbitrary non-empty set A:

(2A,⊆,∪,∩,∅,A, )

where X = A− X for every X ⊆ A.

I The standard 2-element Boolean algebra:

({0, 1},6,∨,∧, 0, 1,¬) or ({0, 1},6,∨,∧, 0, 1,→)

where we write “0” for F and “1” for T.
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Heyting Algebras: definitions and examples

I A Heyting algebra is an algebraic structure of the form

L = (L, E ,∨,∧,⊥,>,→
⇑
)

where:

I L = (L, E ,∨,∧,⊥,>) is a bounded distributive lattice – not
necessarily a complemented lattice,

I The new operation “→” is binary and satisfies the equations:

1. a→ a = >
2. a ∧ (a→ b) = a ∧ b
3. a→ (b ∧ c) = (a→ b) ∧ (a→ c)
4. b 6 a→ b

FACT: The preceding equations uniquely define the operation “→”.
Proof. Exercise.

I FACT: Every Boolean algebra is a Heyting algebra. Proof. Exercise.
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