CS 511, Fall 2018, Handout 22 First-Order Definability

Assaf Kfoury

October 15, 2018

some notational conventions

Suppose $\mathcal{M}=(M, \ldots)$ is a relational structure with universe M, $\ell:\{$ all variables $\} \rightarrow M$ is an environment/look-up table, and φ a first-order WFF such that $\mathcal{M}, \ell \models \varphi$.

some notational conventions

Suppose $\mathcal{M}=(M, \ldots)$ is a relational structure with universe M, $\ell:\{$ all variables $\} \rightarrow M$ is an environment/look-up table, and φ a first-order WFF such that $\mathcal{M}, \ell \vDash \varphi$.

- If φ is closed, we may write $\mathcal{M} \models \varphi$ instead, which means that, for every ℓ, we have $\mathcal{M}, \ell \vDash \varphi$.

some notational conventions

Suppose $\mathcal{M}=(M, \ldots)$ is a relational structure with universe M, $\ell:\{$ all variables $\} \rightarrow M$ is an environment/look-up table, and φ a first-order WFF such that $\mathcal{M}, \ell \vDash \varphi$.

- If φ is closed, we may write $\mathcal{M} \models \varphi$ instead, which means that, for every ℓ, we have $\mathcal{M}, \ell \vDash \varphi$.
- Suppose φ is not closed, e.g., variables x_{1}, x_{2}, and x_{3} occur free in φ, with $\ell\left(x_{1}\right)=a_{1}, \ell\left(x_{2}\right)=a_{2}$, and $\ell\left(x_{3}\right)=a_{3}$, with $a_{1}, a_{2}, a_{3} \in M$.
- We may write $\mathcal{M}, a_{1}, a_{2}, a_{3} \models \varphi\left(x_{1}, x_{2}, x_{3}\right)$ instead of $\mathcal{M}, \ell \models \varphi$.

some notational conventions

Suppose $\mathcal{M}=(M, \ldots)$ is a relational structure with universe M, $\ell:\{$ all variables $\} \rightarrow M$ is an environment/look-up table, and φ a first-order WFF such that $\mathcal{M}, \ell \vDash \varphi$.

- If φ is closed, we may write $\mathcal{M} \models \varphi$ instead, which means that, for every ℓ, we have $\mathcal{M}, \ell \vDash \varphi$.
- Suppose φ is not closed, e.g., variables x_{1}, x_{2}, and x_{3} occur free in φ, with $\ell\left(x_{1}\right)=a_{1}, \ell\left(x_{2}\right)=a_{2}$, and $\ell\left(x_{3}\right)=a_{3}$, with $a_{1}, a_{2}, a_{3} \in M$.
- We may write $\mathcal{M}, a_{1}, a_{2}, a_{3} \models \varphi\left(x_{1}, x_{2}, x_{3}\right)$ instead of $\mathcal{M}, \ell \models \varphi$.
- Or we may write $\mathcal{M} \models \varphi\left[a_{1}, a_{2}, a_{3}\right]$ instead of $\mathcal{M}, \ell \models \varphi$.

first-order definability of relations and functions

- Let $\mathcal{M}=\left(M ; P_{1}^{\mathcal{M}}, P_{2}^{\mathcal{M}}, \ldots, f_{1}^{\mathcal{M}}, f_{2}^{\mathcal{M}}, \ldots\right)$ be a relational structure, where the vocabulary/signature $\Sigma=(\mathscr{P}, \mathscr{F})$ is:

$$
\mathscr{P}=\left\{P_{1}, P_{2}, \ldots\right\} \quad \text { and } \quad \mathscr{F}=\left\{f_{1}, f_{2}, \ldots\right\}
$$

first-order definability of relations and functions

- Let $\mathcal{M}=\left(M ; P_{1}^{\mathcal{M}}, P_{2}^{\mathcal{M}}, \ldots, f_{1}^{\mathcal{M}}, f_{2}^{\mathcal{M}}, \ldots\right)$ be a relational structure, where the vocabulary/signature $\Sigma=(\mathscr{P}, \mathscr{F})$ is:
$\mathscr{P}=\left\{P_{1}, P_{2}, \ldots\right\} \quad$ and $\mathscr{F}=\left\{f_{1}, f_{2}, \ldots\right\}$
- Let $R \subseteq \underbrace{M \times \cdots \times M}_{k}$ be a k-ary relation on M for some $k \geqslant 1$.

first-order definability of relations and functions

- Let $\mathcal{M}=\left(M ; P_{1}^{\mathcal{M}}, P_{2}^{\mathcal{M}}, \ldots, f_{1}^{\mathcal{M}}, f_{2}^{\mathcal{M}}, \ldots\right)$ be a relational structure, where the vocabulary/signature $\Sigma=(\mathscr{P}, \mathscr{F})$ is:
$\mathscr{P}=\left\{P_{1}, P_{2}, \ldots\right\} \quad$ and $\mathscr{F}=\left\{f_{1}, f_{2}, \ldots\right\}$
- Let $R \subseteq \underbrace{M \times \cdots \times M}_{k}$ be a k-ary relation on M for some $k \geqslant 1$.
- R is first-order definable in \mathcal{M} if there is a first-order WFF with k free variables $\varphi\left(x_{1}, \ldots, x_{k}\right)$ such that
$R=\left\{\left(a_{1}, \ldots, a_{k}\right) \in M \times \cdots \times M \mid \mathcal{M}, a_{1}, \ldots, a_{k} \models \varphi\left(x_{1}, \ldots, x_{k}\right)\right\}$
equivalently, using notational conventions earlier in this handout:
$R=\left\{\left(a_{1}, \ldots, a_{k}\right) \in M \times \cdots \times M \mid \mathcal{M} \models \varphi\left[a_{1}, \ldots, a_{k}\right]\right\}$

first-order definability of relations and functions

- Let $f: \underbrace{M \times \cdots \times M}_{k} \rightarrow M$ be a k-ary function on M.

first-order definability of relations and functions

- Let $f: \underbrace{M \times \cdots \times M}_{k} \rightarrow M$ be a k-ary function on M.
- f is first-order definable in \mathcal{M} if the graph of f as a $(k+1)$-ary relation is first-order definable in \mathcal{M}.

first-order definability of relations and functions

- Let $f: \underbrace{M \times \cdots \times M}_{k} \rightarrow M$ be a k-ary function on M.
- f is first-order definable in \mathcal{M} if the graph of f as a $(k+1)$-ary relation is first-order definable in \mathcal{M}.
- Important special case:

First-order definability of a subset $X \subseteq M$. View X as a unary relation.

first-order definability of relations and functions

- Let $f: \underbrace{M \times \cdots \times M}_{k} \rightarrow M$ be a k-ary function on M.
- f is first-order definable in \mathcal{M} if the graph of f as a $(k+1)$-ary relation is first-order definable in \mathcal{M}.
- Important special case:

First-order definability of a subset $X \subseteq M$. View X as a unary relation.

- Important special case:

First-order definability of a single element $a \in M$:
a is first-order definable in \mathcal{M} iff there is a first-order WFF $\varphi(x)$ s.t. $\quad \mathcal{M}, a \models \varphi(x)$

(THIS PAGE INTENTIONALLY LEFT BLANK)

