CS 511, Fall 2018, Handout 22 First-Order Definability

Assaf Kfoury

October 15, 2018

Assaf Kfoury, CS 511, Fall 2018, Handout 22

Suppose $\mathcal{M} = (M, ...)$ is a relational structure with universe M, ℓ : {all variables} $\rightarrow M$ is an environment/look-up table, and φ a first-order WFF such that $\mathcal{M}, \ell \models \varphi$.

Suppose $\mathcal{M} = (M, ...)$ is a relational structure with universe M, ℓ : {all variables} $\rightarrow M$ is an environment/look-up table, and φ a first-order WFF such that $\mathcal{M}, \ell \models \varphi$.

If φ is closed, we may write M ⊨ φ instead, which means that, for every ℓ, we have M, ℓ ⊨ φ.

Suppose $\mathcal{M} = (M, ...)$ is a relational structure with universe M, ℓ : {all variables} $\rightarrow M$ is an environment/look-up table, and φ a first-order WFF such that $\mathcal{M}, \ell \models \varphi$.

- ► If φ is **closed**, we may write $\mathcal{M} \models \varphi$ instead, which means that, for every ℓ , we have $\mathcal{M}, \ell \models \varphi$.
- Suppose φ is not closed, e.g., variables x_1, x_2 , and x_3 occur free in φ , with $\ell(x_1) = a_1, \ell(x_2) = a_2$, and $\ell(x_3) = a_3$, with $a_1, a_2, a_3 \in M$.

• We may write $\mathcal{M}, a_1, a_2, a_3 \models \varphi(x_1, x_2, x_3)$ instead of $\mathcal{M}, \ell \models \varphi$.

Suppose $\mathcal{M} = (M, ...)$ is a relational structure with universe M, ℓ : {all variables} $\rightarrow M$ is an environment/look-up table, and φ a first-order WFF such that $\mathcal{M}, \ell \models \varphi$.

- If φ is closed, we may write M ⊨ φ instead, which means that, for every ℓ, we have M, ℓ ⊨ φ.
- Suppose φ is not closed, e.g., variables x_1, x_2 , and x_3 occur free in φ , with $\ell(x_1) = a_1, \ell(x_2) = a_2$, and $\ell(x_3) = a_3$, with $a_1, a_2, a_3 \in M$.

• We may write $\mathcal{M}, a_1, a_2, a_3 \models \varphi(x_1, x_2, x_3)$ instead of $\mathcal{M}, \ell \models \varphi$.

• Or we may write $\mathcal{M} \models \varphi[a_1, a_2, a_3]$ instead of $\mathcal{M}, \ell \models \varphi$.

• Let $\mathcal{M} = (M; P_1^{\mathcal{M}}, P_2^{\mathcal{M}}, \dots, f_1^{\mathcal{M}}, f_2^{\mathcal{M}}, \dots)$ be a relational structure, where the vocabulary/signature $\Sigma = (\mathscr{P}, \mathscr{F})$ is:

 $\mathscr{P} = \{P_1, P_2, \ldots\}$ and $\mathscr{F} = \{f_1, f_2, \ldots\}$

• Let $\mathcal{M} = (M; P_1^{\mathcal{M}}, P_2^{\mathcal{M}}, \dots, f_1^{\mathcal{M}}, f_2^{\mathcal{M}}, \dots)$ be a relational structure, where the vocabulary/signature $\Sigma = (\mathscr{P}, \mathscr{F})$ is:

$$\mathscr{P} = \{P_1, P_2, \ldots\}$$
 and $\mathscr{F} = \{f_1, f_2, \ldots\}$

• Let
$$R \subseteq \underbrace{M \times \cdots \times M}_{k}$$
 be a *k*-ary relation on *M* for some $k \ge 1$.

• Let $\mathcal{M} = (M; P_1^{\mathcal{M}}, P_2^{\mathcal{M}}, \dots, f_1^{\mathcal{M}}, f_2^{\mathcal{M}}, \dots)$ be a relational structure, where the vocabulary/signature $\Sigma = (\mathscr{P}, \mathscr{F})$ is:

$$\mathscr{P} = \{P_1, P_2, \ldots\}$$
 and $\mathscr{F} = \{f_1, f_2, \ldots\}$

Let
$$R \subseteq \underbrace{M \times \cdots \times M}_{k}$$
 be a *k*-ary relation on *M* for some $k \ge 1$.

R is first-order definable in *M* if there is a first-order WFF with *k* free variables φ(x₁,..., x_k) such that

$$R = \left\{ \left. (a_1, \ldots, a_k) \in M \times \cdots \times M \right| \mathcal{M}, a_1, \ldots, a_k \models \varphi(x_1, \ldots, x_k) \right\}$$

equivalently, using notational conventions earlier in this handout:

$$R = \left\{ \left. (a_1, \ldots, a_k) \in M \times \cdots \times M \right| \mathcal{M} \models \varphi[a_1, \ldots, a_k] \right\}$$

• Let $f: \underbrace{M \times \cdots \times M}_{k} \to M$ be a *k*-ary function on *M*.

• Let
$$f: \underbrace{M \times \cdots \times M}_{k} \to M$$
 be a *k*-ary function on *M*.

► *f* is first-order definable in \mathcal{M} if the graph of *f* as a (k+1)-ary relation is first-order definable in \mathcal{M} .

• Let
$$f: \underbrace{M \times \cdots \times M}_{k} \to M$$
 be a *k*-ary function on *M*.

▶ *f* is first-order definable in \mathcal{M} if the graph of *f* as a (k+1)-ary relation is first-order definable in \mathcal{M} .

Important special case:

First-order definability of a subset $X \subseteq M$. View X as a unary relation.

• Let
$$f: \underbrace{M \times \cdots \times M}_{k} \to M$$
 be a *k*-ary function on *M*.

▶ *f* is first-order definable in \mathcal{M} if the graph of *f* as a (k+1)-ary relation is first-order definable in \mathcal{M} .

Important special case:

First-order definability of a subset $X \subseteq M$. View X as a unary relation.

Important special case:

First-order definability of a single element $a \in M$:

a is first-order definable in \mathcal{M} iff

there is a first-order WFF $\varphi(x)$ s.t. $\mathcal{M}, a \models \varphi(x)$

(THIS PAGE INTENTIONALLY LEFT BLANK)