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several structures over the domain N (assume “
.
=” is available)

structures over the vocabulary/signature
domain of natural numbers predicate symbols function symbols

N , (N, 0, S) P = ∅ F = {0, S}

N1 , (N, 0, S, <) P = {<} F = {0, S}

N2 , (N, 0, S, <,+) P = {<} F = {0, S,+}

N3 , (N, 0, S, <,+, ·) P = {<} F = {0, S,+, ·}

N4 , (N, 0, S, <,+, ·, pr) P = {<, pr} F = {0, S,+, ·}
pr(x) , true iff x is prime

N5 , (N, 0, S, <,+, ·, pr, ↑) P = {<, pr} F = {0, S,+, ·, ↑}
x ↑ y , xy

N6 , · · ·

Question: Is a new predicate (function) definable from earlier ones?
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first-order definability over N
I every number n is definable from 0 and S:

1 , S(0)
2 , S(S(0))
3 , S(S(S(0)))
· · ·

n , S(· · · S︸ ︷︷ ︸
n

(0) · · · )

I “S” is definable from “+”:

for all m, n ∈ N, we have S(m) = n iff m + 1 = n

formally: the sentence ∀x∀y ( S(x) .
= y ↔ x + 1 .

= y ) is true in N2,

which implies the graph of SN2 is defined by the WFF (x + 1 .
= y).

I is “+” definable from “S”? perhaps . . .

for all m, n, p ∈ N, we have m + n = p iff S(· · · S︸ ︷︷ ︸
n

(m) · · · ) = p

“formally”: ∀x∀y∀z [ S(· · · S︸ ︷︷ ︸
y

(x) · · · ) .
= z ↔ x + y .

= z ]
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first-order definability over N

1. FACT
“+” is NOT (first-order) definable from “0” and “S” (difficult!)

2. FACT
“<” is (first-order) definable from “+” (easy: try it!)

3. FACT
“+” is NOT (first-order) definable from “<”, “0”, and “S” (difficult!)

4. FACT
“·” is NOT (first-order) definable from “0”, “S”, and “+”
(no need to mention “<”) (difficult!)

5. FACT
“+” is (first-order) definable from “<” and “·” (tricky: try hint below!)

Hint. Use the following equivalence for all m, n, p ∈ N
(p = 0) ∨ (p = m + n) iff
(m · p + 1) · (n · p + 1) = p2 · (m · n + 1) + 1
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first-order definability over N

I is “pr” definable from {0, S, <,+, ·}?

YES pr(n) is true iff ϕ(n) is true, where ϕ(x) is the WFF

ϕ(x) , ¬(x .
= 1) ∧ ∀y∀z [ (x .

= y · z) → (y .
= 1 ∨ z .

= 1) ]

I is “↑” definable from {0, S, <,+, ·}?
YES m = n ↑ p iff ϕ(m, n, p) is true, where ϕ(x, y, z) is
the WFF . . . (not very difficult: try it!)
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