CS 511, Fall 2018, Handout 23

Extended Example in First-Order Logic

Assaf Kfoury

October 15, 2018

several structures over the domain \mathbb{N} (assume "三" is available)

structures over the domain of natural numbers	vocabulary/signature	
$\mathcal{N} \triangleq(\mathbb{N}, 0, S)$	$\mathscr{P}=\varnothing$	$\mathscr{F}=\{0, S\}$
$\mathcal{N}_{1} \triangleq(\mathbb{N}, 0, S,<)$	$\mathscr{P}=\{<\}$	$\mathscr{F}=\{0, S\}$
$\mathcal{N}_{2} \triangleq(\mathbb{N}, 0, S,<,+)$	$\mathscr{P}=\{<\}$	$\mathscr{F}=\{0, S,+\}$
$\mathcal{N}_{3} \triangleq(\mathbb{N}, 0, S,<,+, \cdot)$	$\mathscr{P}=\{<\}$	$\mathscr{F}=\{0, S,+, \cdot\}$
$\mathcal{N}_{4} \triangleq(\mathbb{N}, 0, S,<,+, \cdot$, pr $)$	$\mathscr{P}=\{<, \mathrm{pr}\}$	$\mathscr{F}=\{0, S,+, \cdot\}$
$\operatorname{pr}(x) \triangleq$ true iff x is prime		
$\mathcal{N}_{5} \triangleq(\mathbb{N}, 0, S,<,+, \cdot, \mathrm{pr}, \uparrow)$	$\mathscr{P}=\{<, \mathrm{pr}\}$	$\mathscr{F}=\{0, S,+, \cdot, \uparrow\}$
$x \uparrow y \triangleq x^{y}$		
$\mathcal{N}_{6} \triangleq \ldots$		

Question: Is a new predicate (function) definable from earlier ones?

first-order definability over \mathbb{N}

- every number n is definable from 0 and S :

$$
\begin{aligned}
& 1 \triangleq S(0) \\
& 2 \triangleq S(S(0)) \\
& 3 \triangleq S(S(S(0))) \\
& \quad \cdots \\
& n \triangleq \underbrace{S(\cdots S}_{n}(0) \cdots)
\end{aligned}
$$

first-order definability over \mathbb{N}

- every number n is definable from 0 and S :

$$
\begin{aligned}
& 1 \triangleq S(0) \\
& 2 \triangleq S(S(0)) \\
& 3 \triangleq S(S(S(0))) \\
& \quad \cdots \\
& n \triangleq \underbrace{S(\cdots S}_{n}(0) \cdots)
\end{aligned}
$$

- " S " is definable from "+": for all $m, n \in \mathbb{N}$, we have $S(m)=n$ iff $m+1=n$

first-order definability over \mathbb{N}

- every number n is definable from 0 and S :

$$
\begin{aligned}
& 1 \triangleq S(0) \\
& 2 \triangleq S(S(0)) \\
& 3 \triangleq S(S(S(0))) \\
& \quad \cdots \\
& n \triangleq \underbrace{S(\cdots S}_{n}(0) \cdots)
\end{aligned}
$$

- " S " is definable from "+":
for all $m, n \in \mathbb{N}$, we have $S(m)=n$ iff $m+1=n$ formally: the sentence $\forall x \forall y(S(x) \doteq y \leftrightarrow x+1 \doteq y)$ is true in \mathcal{N}_{2}, which implies the graph of $S^{\mathcal{N}_{2}}$ is defined by the WFF $(x+1 \doteq y)$.

first-order definability over \mathbb{N}

- every number n is definable from 0 and S :

$$
\begin{aligned}
& 1 \triangleq S(0) \\
& 2 \triangleq S(S(0)) \\
& 3 \triangleq S(S(S(0))) \\
& \quad \cdots \\
& n \triangleq \underbrace{S(\cdots S}_{n}(0) \cdots)
\end{aligned}
$$

- " S " is definable from "+":
for all $m, n \in \mathbb{N}$, we have $S(m)=n$ iff $m+1=n$
formally: the sentence $\forall x \forall y(S(x) \doteq y \leftrightarrow x+1 \doteq y)$ is true in \mathcal{N}_{2}, which implies the graph of $S^{\mathcal{N}_{2}}$ is defined by the WFF $(x+1 \doteq y)$.
- is " + " definable from " S "? perhaps . .

first-order definability over \mathbb{N}

- every number n is definable from 0 and S :

$$
\begin{aligned}
& 1 \triangleq S(0) \\
& 2 \triangleq S(S(0)) \\
& 3 \triangleq S(S(S(0))) \\
& \quad \cdots \\
& n \triangleq \underbrace{S(\cdots S}_{n}(0) \cdots)
\end{aligned}
$$

- " S " is definable from "+":
for all $m, n \in \mathbb{N}$, we have $S(m)=n$ iff $m+1=n$ formally: the sentence $\forall x \forall y(S(x) \doteq y \leftrightarrow x+1 \doteq y)$ is true in \mathcal{N}_{2}, which implies the graph of $S^{\mathcal{N}_{2}}$ is defined by the WFF $(x+1 \doteq y)$.
- is "+" definable from " S "? perhaps ... for all $m, n, p \in \mathbb{N}$, we have $m+n=p$ iff $\underbrace{S(\cdots S}_{n}(m) \cdots)=p$

first-order definability over \mathbb{N}

- every number n is definable from 0 and S :

$$
\begin{aligned}
& 1 \triangleq S(0) \\
& 2 \triangleq S(S(0)) \\
& 3 \triangleq S(S(S(0))) \\
& \quad \cdots \\
& n \triangleq \underbrace{S(\cdots S}_{n}(0) \cdots)
\end{aligned}
$$

- " S " is definable from "+":
for all $m, n \in \mathbb{N}$, we have $S(m)=n$ iff $m+1=n$ formally: the sentence $\forall x \forall y(S(x) \doteq y \leftrightarrow x+1 \doteq y)$ is true in \mathcal{N}_{2}, which implies the graph of $S^{\mathcal{N}_{2}}$ is defined by the WFF $(x+1 \doteq y)$.
- is "+" definable from " S "? perhaps ...

"formally": $\forall x \forall y \forall z[\underbrace{S(\cdots S}_{y}(x) \cdots) \doteq z \leftrightarrow x+y \doteq z]$

first-order definability over \mathbb{N}

1. FACT
" + " is NOT (first-order) definable from " 0 " and " S " (difficult!)

first-order definability over \mathbb{N}

1. FACT
" + " is NOT (first-order) definable from " 0 " and " S " (difficult!)
2. FACT
" $<$ " is (first-order) definable from "+" (easy: try it!)

first-order definability over \mathbb{N}

1. FACT
" + " is NOT (first-order) definable from " 0 " and " S " (difficult!)
2. FACT
" $<$ " is (first-order) definable from "+" (easy: try it!)
3. FACT
" + " is NOT (first-order) definable from "<", " 0 ", and " S " (difficult!)

first-order definability over \mathbb{N}

1. FACT
" + " is NOT (first-order) definable from " 0 " and " S " (difficult!)
2. FACT
" $<$ " is (first-order) definable from "+" (easy: try it!)
3. FACT
" + " is NOT (first-order) definable from " $<$ ", " 0 ", and "S" (difficult!)
4. FACT
"." is NOT (first-order) definable from " 0 ", " S ", and " + " (no need to mention " $<$ ") (difficult!)

first-order definability over \mathbb{N}

1. FACT
" + " is NOT (first-order) definable from " 0 " and " S " (difficult!)
2. FACT
" $<$ " is (first-order) definable from "+" (easy: try it!)
3. FACT
" + " is NOT (first-order) definable from " $<$ ", " 0 ", and "S" (difficult!)
4. FACT
"." is NOT (first-order) definable from " 0 ", " S ", and " + "
(no need to mention " $<$ ") (difficult!)
5. FACT
"+" is (first-order) definable from " $<$ " and "." (tricky: try hint below!)

first-order definability over \mathbb{N}

1. FACT
" + " is NOT (first-order) definable from " 0 " and " S " (difficult!)
2. FACT
" $<$ " is (first-order) definable from "+" (easy: try it!)
3. FACT
" + " is NOT (first-order) definable from " $<$ ", " 0 ", and "S" (difficult!)
4. FACT
"." is NOT (first-order) definable from " 0 ", " S ", and " + "
(no need to mention "<") (difficult!)
5. FACT
" + " is (first-order) definable from " $<$ " and "." (tricky: try hint below!)

Hint. Use the following equivalence for all $m, n, p \in \mathbb{N}$
$(p=0) \vee(p=m+n)$ iff
$(m \cdot p+1) \cdot(n \cdot p+1)=p^{2} \cdot(m \cdot n+1)+1$

first-order definability over \mathbb{N}

- is "pr" definable from $\{0, S,<,+, \cdot\}$?

first-order definability over \mathbb{N}

- is "pr" definable from $\{0, S,<,+, \cdot\}$?

YES $\operatorname{pr}(n)$ is true iff $\varphi(n)$ is true, where $\varphi(x)$ is the WFF

$$
\varphi(x) \triangleq \neg(x \doteq 1) \wedge \forall y \forall z[(x \doteq y \cdot z) \rightarrow(y \doteq 1 \vee z \doteq 1)]
$$

- is " \uparrow " definable from $\{0, S,<,+, \cdot\}$?

first-order definability over \mathbb{N}

- is "pr" definable from $\{0, S,<,+, \cdot\}$?

YES $\operatorname{pr}(n)$ is true iff $\varphi(n)$ is true, where $\varphi(x)$ is the WFF

$$
\varphi(x) \triangleq \neg(x \doteq 1) \wedge \forall y \forall z[(x \doteq y \cdot z) \rightarrow(y \doteq 1 \vee z \doteq 1)]
$$

- is " \uparrow " definable from $\{0, S,<,+, \cdot\}$?

YES $m=n \uparrow p$ iff $\varphi(m, n, p)$ is true, where $\varphi(x, y, z)$ is the WFF . . . (not very difficult: try it!)

(THIS PAGE INTENTIONALLY LEFT BLANK)

