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deductive closures and first-order theories

I Let Γ be a set of first-order sentences over signature Σ.
The deductive closure of Γ is:

Γ , {ϕ | ϕ first-order sentence s.t. Γ ` ϕ }

I A first-order theory T over signature Σ consists of:

I a set A of axioms, which are first-order sentences over Σ,
I together with all first-order sentences deducible from A.

Equivalently, a first-order theory
is the deductive closure of a set of first-order sentences.

Assaf Kfoury, CS 511, Fall 2018, Handout 24 page 2 of 15



deductive closures and first-order theories

I Let Γ be a set of first-order sentences over signature Σ.
The deductive closure of Γ is:

Γ , {ϕ | ϕ first-order sentence s.t. Γ ` ϕ }

I A first-order theory T over signature Σ consists of:

I a set A of axioms, which are first-order sentences over Σ,
I together with all first-order sentences deducible from A.

Equivalently, a first-order theory
is the deductive closure of a set of first-order sentences.

Assaf Kfoury, CS 511, Fall 2018, Handout 24 page 3 of 15



deductive closures and first-order theories

I Let Γ be a set of first-order sentences over signature Σ.
The deductive closure of Γ is:

Γ , {ϕ | ϕ first-order sentence s.t. Γ ` ϕ }

I A first-order theory T over signature Σ consists of:

I a set A of axioms, which are first-order sentences over Σ,
I together with all first-order sentences deducible from A.

Equivalently, a first-order theory
is the deductive closure of a set of first-order sentences.

Assaf Kfoury, CS 511, Fall 2018, Handout 24 page 4 of 15



deductive closures and first-order theories

I Let Γ be a set of first-order sentences over signature Σ.
The deductive closure of Γ is:

Γ , {ϕ | ϕ first-order sentence s.t. Γ ` ϕ }

I A first-order theory T over signature Σ consists of:

I a set A of axioms, which are first-order sentences over Σ,
I together with all first-order sentences deducible from A.

Equivalently, a first-order theory
is the deductive closure of a set of first-order sentences.

Assaf Kfoury, CS 511, Fall 2018, Handout 24 page 5 of 15



the first-order theory of a relational structure

I IfM is a relational structure, the first-order theory ofM is:

Th(M) , {ϕ | ϕ is a first-order sentence s.t.M |= ϕ }

Question: Is Th(M) deductively closed?

I Yes! Can you explain why?

Assaf Kfoury, CS 511, Fall 2018, Handout 24 page 6 of 15



the first-order theory of a relational structure

I IfM is a relational structure, the first-order theory ofM is:

Th(M) , {ϕ | ϕ is a first-order sentence s.t.M |= ϕ }

Question: Is Th(M) deductively closed?

I Yes! Can you explain why?

Assaf Kfoury, CS 511, Fall 2018, Handout 24 page 7 of 15



the first-order theory of N , (N, 0, S)
Consider again the structure N , (N, 0, S) in Handout 23.
The first-order theory of N is:

Th(N ) , {ϕ | ϕ is a first-order sentence s.t. N |= ϕ }

Some sentences that are true in N :

S1 ∀x¬(Sx .
= 0)

S2 ∀x ∀y (Sx .
= Sy→ x .

= y)

S3 ∀y (¬(y .
= 0)→ ∃x (y .

= Sx))

S4.1 ∀x¬(Sx .
= x)

S4.2 ∀x¬(SSx .
= x)

· · ·

S4.n ∀x¬(S · · · S︸ ︷︷ ︸
n

x .
= x)

· · ·
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the first-order theory of N , (N, 0, S)

I let Γ = {S1, S2, S3, S4.1, S4.2, S4.3, . . .}
I clearly N |= ϕ for every ϕ ∈ Γ

so that Γ ⊆ Th(N )

I what can we say about the deductive closure of the set Γ above:
Γ = {ϕ | ϕ first-order sentence s.t. Γ ` ϕ } ?

I certainly Γ ⊆ Th(N ), by soundness

I in fact, the equality holds:

Γ = Th(N ) (not shown here)

I we therefore say that Γ is an axiomatization of Th(N ) because

every sentence ϕ made true by N is formally deduced from Γ
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first-order theories of several structures over domain N
From Handout 23:

N , (N, 0, S), N1 , (N, 0, S, <), N2 , (N, 0, S, <,+)

N3 , (N, 0, S, <,+, ·)
N4 , (N, 0, S, <,+, ·, pr) where pr(x) , true iff x is prime

N5 , (N, 0, S, <,+, ·, pr, ↑) where x ↑ y , xy

1. FACT
The first-order theory of each of N , N1, and N2, is axiomatizable and
decidable.

2. FACT
The first-order theory of each ofN3,N4, andN5, is axiomatizable but not
decidable.
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