
CS 511, Fall 2018, Handout 25

Program Schemes and First-Order Logic

Assaf Kfoury

1 November 2018

Assaf Kfoury, CS 511, Fall 2018, Handout 25 page 1 of 23

PROGRAMS and PROGRAM SCHEMES

I Let P be a program in some program language
(e.g., Python, Java, Haskell, C, etc.).

I P uses several primitive operators (“prim ops”)
(e.g., +, ×, ÷, div, mod, <=, !=, etc.)

I P operates over one or several domains
(e.g., Z, Q, B, etc.)

I We obtain a program scheme S from P by omitting the meaning of all the prim
ops and leaving them as uninterpreted functions and uninterpreted relations.

I S is thus the part of P that directs execution according to P’s code, i.e., S can be
viewed as P’s control structure which determines P’s flow of execution.

I We recover P from S by restoring the meaning of all the prim ops.

I Some of the material to follow in this handout is closely related to
Handout 12 on Unwinding of Programs .

Assaf Kfoury, CS 511, Fall 2018, Handout 25 page 2 of 23

http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS511-Fall18/Lectures/HD12.unwinding.pdf

PROGRAMS and PROGRAM SCHEMES

I Let P be a program in some program language
(e.g., Python, Java, Haskell, C, etc.).

I P uses several primitive operators (“prim ops”)
(e.g., +, ×, ÷, div, mod, <=, !=, etc.)

I P operates over one or several domains
(e.g., Z, Q, B, etc.)

I We obtain a program scheme S from P by omitting the meaning of all the prim
ops and leaving them as uninterpreted functions and uninterpreted relations.

I S is thus the part of P that directs execution according to P’s code, i.e., S can be
viewed as P’s control structure which determines P’s flow of execution.

I We recover P from S by restoring the meaning of all the prim ops.

I Some of the material to follow in this handout is closely related to
Handout 12 on Unwinding of Programs .

Assaf Kfoury, CS 511, Fall 2018, Handout 25 page 3 of 23

http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS511-Fall18/Lectures/HD12.unwinding.pdf

PROGRAMS and PROGRAM SCHEMES

I Let P be a program in some program language
(e.g., Python, Java, Haskell, C, etc.).

I P uses several primitive operators (“prim ops”)
(e.g., +, ×, ÷, div, mod, <=, !=, etc.)

I P operates over one or several domains
(e.g., Z, Q, B, etc.)

I We obtain a program scheme S from P by omitting the meaning of all the prim
ops and leaving them as uninterpreted functions and uninterpreted relations.

I S is thus the part of P that directs execution according to P’s code, i.e., S can be
viewed as P’s control structure which determines P’s flow of execution.

I We recover P from S by restoring the meaning of all the prim ops.

I Some of the material to follow in this handout is closely related to
Handout 12 on Unwinding of Programs .

Assaf Kfoury, CS 511, Fall 2018, Handout 25 page 4 of 23

http://www.cs.bu.edu/faculty/kfoury/UNI-Teaching/CS511-Fall18/Lectures/HD12.unwinding.pdf

example: a PROGRAM P and corresponding PROGRAM SCHEME S
Euclidean GCD program

precondition :

x > 0 and y > 0

1 : m := min(x,y)

2 : n := max(x,y)

3 : while m 6= 0

4 : r := (n mod m)

5 : n := m

6 : m := r

7 : return n

corresponding program scheme

precondition :

R (x,c) ∧ R (y,c)

1 : m := lo (x,y)

2 : n := hi (x,y)

3 : while ¬(m .
= c)

4 : r := f (n,m)

5 : n := m

6 : m := r

7 : return n

Program execution is fully determined by the values of input variables x and y, i.e., by constraints
exclusively involving x and y and none of the program/internal variables {m,n,r}, e.g., consider the
number of times the loop body {4,5,6} is executed.

For example, {4,5,6} is executed twice iff:

min(x,y) 6= 0 &

max(x,y) mod min(x,y) 6= 0 &

min(x,y) mod
(
max(x,y) mod min(x,y)

)
= 0

¬
(

lo x y .
= c

)
∧

¬
(

f (hi x y, lo x y) .
= c

)
∧

f
(

lo x y, f (hi x y, lo x y)
) .
= c

Assaf Kfoury, CS 511, Fall 2018, Handout 25 page 5 of 23

example: a PROGRAM P and corresponding PROGRAM SCHEME S
Euclidean GCD program

precondition :

x > 0 and y > 0

1 : m := min(x,y)

2 : n := max(x,y)

3 : while m 6= 0

4 : r := (n mod m)

5 : n := m

6 : m := r

7 : return n

corresponding program scheme

precondition :

R (x,c) ∧ R (y,c)

1 : m := lo (x,y)

2 : n := hi (x,y)

3 : while ¬(m .
= c)

4 : r := f (n,m)

5 : n := m

6 : m := r

7 : return n

Program execution is fully determined by the values of input variables x and y, i.e., by constraints
exclusively involving x and y and none of the program/internal variables {m,n,r}, e.g., consider the
number of times the loop body {4,5,6} is executed.

For example, {4,5,6} is executed twice iff:

min(x,y) 6= 0 &

max(x,y) mod min(x,y) 6= 0 &

min(x,y) mod
(
max(x,y) mod min(x,y)

)
= 0

¬
(

lo x y .
= c

)
∧

¬
(

f (hi x y, lo x y) .
= c

)
∧

f
(

lo x y, f (hi x y, lo x y)
) .
= c

Assaf Kfoury, CS 511, Fall 2018, Handout 25 page 6 of 23

example: a PROGRAM P and corresponding PROGRAM SCHEME S
Euclidean GCD program

precondition :

x > 0 and y > 0

1 : m := min(x,y)

2 : n := max(x,y)

3 : while m 6= 0

4 : r := (n mod m)

5 : n := m

6 : m := r

7 : return n

corresponding program scheme

precondition :

R (x,c) ∧ R (y,c)

1 : m := lo (x,y)

2 : n := hi (x,y)

3 : while ¬(m .
= c)

4 : r := f (n,m)

5 : n := m

6 : m := r

7 : return n

Program execution is fully determined by the values of input variables x and y, i.e., by constraints
exclusively involving x and y and none of the program/internal variables {m,n,r}, e.g., consider the
number of times the loop body {4,5,6} is executed.

For example, {4,5,6} is executed twice iff:

min(x,y) 6= 0 &

max(x,y) mod min(x,y) 6= 0 &

min(x,y) mod
(
max(x,y) mod min(x,y)

)
= 0

¬
(

lo x y .
= c

)
∧

¬
(

f (hi x y, lo x y) .
= c

)
∧

f
(

lo x y, f (hi x y, lo x y)
) .
= c

Assaf Kfoury, CS 511, Fall 2018, Handout 25 page 7 of 23

example: a PROGRAM P and corresponding PROGRAM SCHEME S
Euclidean GCD program

precondition :

x > 0 and y > 0

1 : m := min(x,y)

2 : n := max(x,y)

3 : while m 6= 0

4 : r := (n mod m)

5 : n := m

6 : m := r

7 : return n

corresponding program scheme

precondition :

R (x,c) ∧ R (y,c)

1 : m := lo (x,y)

2 : n := hi (x,y)

3 : while ¬(m .
= c)

4 : r := f (n,m)

5 : n := m

6 : m := r

7 : return n

Program execution is fully determined by the values of input variables x and y, i.e., by constraints
exclusively involving x and y and none of the program/internal variables {m,n,r}, e.g., consider the
number of times the loop body {4,5,6} is executed.

For example, {4,5,6} is executed twice iff:

min(x,y) 6= 0 &

max(x,y) mod min(x,y) 6= 0 &

min(x,y) mod
(
max(x,y) mod min(x,y)

)
= 0

¬
(

lo x y .
= c

)
∧

¬
(

f (hi x y, lo x y) .
= c

)
∧

f
(

lo x y, f (hi x y, lo x y)
) .
= c

Assaf Kfoury, CS 511, Fall 2018, Handout 25 page 8 of 23

example: a PROGRAM P and corresponding PROGRAM SCHEME S
Euclidean GCD program

precondition :

x > 0 and y > 0

1 : m := min(x,y)

2 : n := max(x,y)

3 : while m 6= 0

4 : r := (n mod m)

5 : n := m

6 : m := r

7 : return n

corresponding program scheme

precondition :

R (x,c) ∧ R (y,c)

1 : m := lo (x,y)

2 : n := hi (x,y)

3 : while ¬(m .
= c)

4 : r := f (n,m)

5 : n := m

6 : m := r

7 : return n

Program execution is fully determined by the values of input variables x and y, i.e., by constraints
exclusively involving x and y and none of the program/internal variables {m,n,r}, e.g., consider the
number of times the loop body {4,5,6} is executed.

For example, {4,5,6} is executed twice iff:

min(x,y) 6= 0 &

max(x,y) mod min(x,y) 6= 0 &

min(x,y) mod
(
max(x,y) mod min(x,y)

)
= 0

¬
(

lo x y .
= c

)
∧

¬
(

f (hi x y, lo x y) .
= c

)
∧

f
(

lo x y, f (hi x y, lo x y)
) .
= c

Assaf Kfoury, CS 511, Fall 2018, Handout 25 page 9 of 23

example: unwinding a PROGRAM SCHEME into an INFINITE FLOW DIAGRAM

precondition :

R (x,c)∧R (y,c)

1 : m := lo (x,y)

2 : n := hi (x,y)

3 : if ¬(m .
= c) then (7 : return n) else

4 : r := f (m,n)

5 : n := m
6 : m := r

3 : if ¬(m .
= c) then (7 : return n) else

4 : r := f (m,n)

5 : n := m
6 : m := r

3 : if ¬(m .
= c) then (7 : return n) else

4 : r := f (m,n)

5 : n := m
6 : m := r

...
...

I every diverging execution is
described by an infinite sequence of
instruction labels of the form:

1 2 (3 4 5 6)ω

I every converging execution is
described by a finite sequence of
instruction labels of the form:

1 2 (3 4 5 6)∗ 3 7

I every diverging execution is
specified by an infinite set of
quantifier-free first-order WFF’s over
the signature {R , lo ,hi , f ,c} and
input variables {x,y}

I every converging execution is
specified by a finite set of
quantifier-free first-order WFF’s over
the signature {R , lo ,hi , f ,c} and
input variables {x,y}

Assaf Kfoury, CS 511, Fall 2018, Handout 25 page 10 of 23

example: unwinding a PROGRAM SCHEME into an INFINITE FLOW DIAGRAM

precondition :

R (x,c)∧R (y,c)

1 : m := lo (x,y)

2 : n := hi (x,y)

3 : if ¬(m .
= c) then (7 : return n) else

4 : r := f (m,n)

5 : n := m
6 : m := r

3 : if ¬(m .
= c) then (7 : return n) else

4 : r := f (m,n)

5 : n := m
6 : m := r

3 : if ¬(m .
= c) then (7 : return n) else

4 : r := f (m,n)

5 : n := m
6 : m := r

...
...

I every diverging execution is
described by an infinite sequence of
instruction labels of the form:

1 2 (3 4 5 6)ω

I every converging execution is
described by a finite sequence of
instruction labels of the form:

1 2 (3 4 5 6)∗ 3 7

I every diverging execution is
specified by an infinite set of
quantifier-free first-order WFF’s over
the signature {R , lo ,hi , f ,c} and
input variables {x,y}

I every converging execution is
specified by a finite set of
quantifier-free first-order WFF’s over
the signature {R , lo ,hi , f ,c} and
input variables {x,y}

Assaf Kfoury, CS 511, Fall 2018, Handout 25 page 11 of 23

example: unwinding a PROGRAM SCHEME into an INFINITE FLOW DIAGRAM

precondition :

R (x,c)∧R (y,c)

1 : m := lo (x,y)

2 : n := hi (x,y)

3 : if ¬(m .
= c) then (7 : return n) else

4 : r := f (m,n)

5 : n := m
6 : m := r

3 : if ¬(m .
= c) then (7 : return n) else

4 : r := f (m,n)

5 : n := m
6 : m := r

3 : if ¬(m .
= c) then (7 : return n) else

4 : r := f (m,n)

5 : n := m
6 : m := r

...
...

I every diverging execution is
described by an infinite sequence of
instruction labels of the form:

1 2 (3 4 5 6)ω

I every converging execution is
described by a finite sequence of
instruction labels of the form:

1 2 (3 4 5 6)∗ 3 7

I every diverging execution is
specified by an infinite set of
quantifier-free first-order WFF’s over
the signature {R , lo ,hi , f ,c } and
input variables {x,y}

I every converging execution is
specified by a finite set of
quantifier-free first-order WFF’s over
the signature {R , lo ,hi , f ,c } and
input variables {x,y}

Assaf Kfoury, CS 511, Fall 2018, Handout 25 page 12 of 23

from PROGRAM SCHEMES to FIRST-ORDER LOGIC

I Let P be a deterministic sequential program whose prim ops are the interpretations
of the predicate symbols and function symbols of a signature Σ in a Σ-structure M .

I Let X , {x1, . . . ,xm}, Y , {y1, . . . ,yn}, and Z , {z1, . . . ,zp}, be input variables,
output variables, and program variables of P, with m > 1, n > 0, and p > 0.

In particular, an execution of P is triggered by an assignment of values from the
domains of M to the input variables X. If and when an execution of P terminates,
the returned output is the set of values stored in the variables Y .

I Let S be the program scheme corresponding to program P, i.e., the interpretation
of S in M , denoted SM , is exactly P.

I Theorem 1: Let Paths(S), {π1,π2, . . .} be the set of all finite execution paths in
program scheme S. Let every test in S be a first-order WFF ϕ over signature Σ with
FV(ϕ)⊆ X∪Y ∪Z.

For every πi ∈ Paths(S) there is a first-order WFF αi over Σ with
FV(αi)⊆ {x1, . . . ,xm} such that for every execution of P = SM on input values
~a , (a1, . . . ,am):

the execution converges by following path πi iff (M ,~a) |= αi .

I Let PathConstraints(S), {α1,α2, . . .} be the first-order WFF’s thus defined over
signature Σ with free variables in X.

Assaf Kfoury, CS 511, Fall 2018, Handout 25 page 13 of 23

from PROGRAM SCHEMES to FIRST-ORDER LOGIC

I Let P be a deterministic sequential program whose prim ops are the interpretations
of the predicate symbols and function symbols of a signature Σ in a Σ-structure M .

I Let X , {x1, . . . ,xm}, Y , {y1, . . . ,yn}, and Z , {z1, . . . ,zp}, be input variables,
output variables, and program variables of P, with m > 1, n > 0, and p > 0.

In particular, an execution of P is triggered by an assignment of values from the
domains of M to the input variables X. If and when an execution of P terminates,
the returned output is the set of values stored in the variables Y .

I Let S be the program scheme corresponding to program P, i.e., the interpretation
of S in M , denoted SM , is exactly P.

I Theorem 1: Let Paths(S), {π1,π2, . . .} be the set of all finite execution paths in
program scheme S. Let every test in S be a first-order WFF ϕ over signature Σ with
FV(ϕ)⊆ X∪Y ∪Z.

For every πi ∈ Paths(S) there is a first-order WFF αi over Σ with
FV(αi)⊆ {x1, . . . ,xm} such that for every execution of P = SM on input values
~a , (a1, . . . ,am):

the execution converges by following path πi iff (M ,~a) |= αi .

I Let PathConstraints(S), {α1,α2, . . .} be the first-order WFF’s thus defined over
signature Σ with free variables in X.

Assaf Kfoury, CS 511, Fall 2018, Handout 25 page 14 of 23

from PROGRAM SCHEMES to FIRST-ORDER LOGIC

I Theorem 2 is a weaker version of Theorem 1 that applies to common
programming languages (Python, Java, Haskell, C, etc.) – why?

I Theorem 2: Let Paths(S), {π1,π2, . . .} be the set of all finite execution paths in
program scheme S. Let every test in S be a first-order literal (i.e., an atomic or
negated atomic WFF) over signature Σ with variables in X∪Y ∪Z.

For every πi ∈ Paths(S) there is a conjunction αi of literals over Σ with variables in
{x1, . . . ,xm} such that for every execution of P = SM on input values
~a , (a1, . . . ,am):

the execution converges by following path πi iff (M ,~a) |= αi .

Assaf Kfoury, CS 511, Fall 2018, Handout 25 page 15 of 23

from PROGRAM SCHEMES to FIRST-ORDER LOGIC

I Let S be a program scheme whose prim ops are in the signature Σ and whose
input variables are X = {x1, . . . ,xm}. Let C be a class of Σ-structures.
Let Φ , {ϕ1,ϕ2, . . .} be a set (possibly infinite) of first-order WFF’s over
signature Σ with FV(ϕi)⊆ {x1, . . . ,xm} for every i > 1.

We say that Φ enforces totality of program scheme S (i.e.,
termination/convergence of all executions by S) in the class C iff:

for every M ∈ C and every m-tuple~a , (a1, . . . ,am) of inputs

from the domains of M , if (M ,~a) |= Φ then the execution of SM (~a) converges.

I Corollary: The following are equivalent statements:

1. Φ , {ϕ1,ϕ2, . . .} enforces totality of program scheme S in class C .
2. For every M ∈ C and all inputs~a , (a1, . . . ,am) from the domains of M ,

it holds that if (M ,~a) |= Φ then (M ,~a) |=
∨

j>1 αj.

3. For every M ∈ C and all inputs~a , (a1, . . . ,am) from the domains of M ,
it holds that (M ,~a) |=

(∧
i>1 ϕi→

∨
j>1 αj

)
.

4. For every M ∈ C , it holds that M |= ∀~x
(∧

i>1 ϕi→
∨

i>1 αi
)
.

Note: If Φ is an infinite set, then
∧

i>1 ϕi is an infinitary conjunction, and thus not in the
syntax of first-order logic. Likewise,

∨
i>1 αi is an infinitary disjunction, and thus not in the

syntax of first-order logic, when PathConstraints(S) = {α1,α2, . . .} is an infinite set.

Assaf Kfoury, CS 511, Fall 2018, Handout 25 page 16 of 23

from PROGRAM SCHEMES to FIRST-ORDER LOGIC

I Let S be a program scheme whose prim ops are in the signature Σ and whose
input variables are X = {x1, . . . ,xm}. Let C be a class of Σ-structures.
Let Φ , {ϕ1,ϕ2, . . .} be a set (possibly infinite) of first-order WFF’s over
signature Σ with FV(ϕi)⊆ {x1, . . . ,xm} for every i > 1.

We say that Φ enforces totality of program scheme S (i.e.,
termination/convergence of all executions by S) in the class C iff:

for every M ∈ C and every m-tuple~a , (a1, . . . ,am) of inputs

from the domains of M , if (M ,~a) |= Φ then the execution of SM (~a) converges.

I Corollary: The following are equivalent statements:

1. Φ , {ϕ1,ϕ2, . . .} enforces totality of program scheme S in class C .
2. For every M ∈ C and all inputs~a , (a1, . . . ,am) from the domains of M ,

it holds that if (M ,~a) |= Φ then (M ,~a) |=
∨

j>1 αj.

3. For every M ∈ C and all inputs~a , (a1, . . . ,am) from the domains of M ,
it holds that (M ,~a) |=

(∧
i>1 ϕi→

∨
j>1 αj

)
.

4. For every M ∈ C , it holds that M |= ∀~x
(∧

i>1 ϕi→
∨

i>1 αi
)
.

Note: If Φ is an infinite set, then
∧

i>1 ϕi is an infinitary conjunction, and thus not in the
syntax of first-order logic. Likewise,

∨
i>1 αi is an infinitary disjunction, and thus not in the

syntax of first-order logic, when PathConstraints(S) = {α1,α2, . . .} is an infinite set.

Assaf Kfoury, CS 511, Fall 2018, Handout 25 page 17 of 23

HOW STRONG CAN WE HOPE TO MAKE THE PRECONDITIONS?

I We think of Φ as a set of formal preconditions for program scheme S.

Question: Given an arbitrary program scheme S, can we formulate the
preconditions Φ, as a set of first-order WFF’s, to enforce totality of S?

I Exercise: Let S be an arbitrary program scheme over some signature Σ with input
variables X , {x1, . . . ,xm}.
Define an infinitary WFF Ψ (note: Ψ is not restricted to be first-order) over
signature Σ with FV(Ψ)⊆ X such that for every Σ-structure M and all inputs
~a , (a1, . . . ,am) from the domains of M , it holds that

if (M ,~a) |= Ψ then the execution of SM (~a) converges .

In words, Ψ enforces totality of S in all Σ-structures M , not restricted to any
particular class.

Assaf Kfoury, CS 511, Fall 2018, Handout 25 page 18 of 23

HOW STRONG CAN WE HOPE TO MAKE THE PRECONDITIONS?

I We think of Φ as a set of formal preconditions for program scheme S.

Question: Given an arbitrary program scheme S, can we formulate the
preconditions Φ, as a set of first-order WFF’s, to enforce totality of S?

I Exercise: Let S be an arbitrary program scheme over some signature Σ with input
variables X , {x1, . . . ,xm}.
Define an infinitary WFF Ψ (note: Ψ is not restricted to be first-order) over
signature Σ with FV(Ψ)⊆ X such that for every Σ-structure M and all inputs
~a , (a1, . . . ,am) from the domains of M , it holds that

if (M ,~a) |= Ψ then the execution of SM (~a) converges .

In words, Ψ enforces totality of S in all Σ-structures M , not restricted to any
particular class.

Assaf Kfoury, CS 511, Fall 2018, Handout 25 page 19 of 23

THE UNWIND PROPERTY

I Let S be a program scheme over some signature Σ with input variables X , {x1, . . . ,xm}.
We say S unwinds in a class C of Σ-structures iff there is a finite subset
{π1, . . . ,πk} ⊆ Paths(S) and corresponding finite subset {α1, . . . ,αk} ⊆ PathConstraints(S)
such that, for all M ∈ C and all inputs~a , (a1, . . . ,am) from the domains of M :

the execution of SM (~a) converges iff (M ,~a) |= α1 ∨ . . .∨αk .

Informally, only a finite set of k > 1 paths are used by converging executions of S. Put
differently, if S unwinds in the class C , then S is equivalent to a “trivial” (i.e., loop-free)
program scheme.

I Theorem 3: Let S be a program scheme over signature Σ with input variables
X , {x1, . . . ,xm}. Let Φ be a set (possibly infinite) of first-order WFF’s over
signature Σ with FV(Φ)⊆ X and let C , {M |M |= Φ}.1

If Φ enforces totality of S in the class C , then S unwinds in the class C .

In other words, we cannot constrain the interpretations in C for a program scheme
S by first-order conditions Φ in order to ensure termination – unless we also make
superfluous the presence of the loops in S.

1Strictly, {M |M |= Φ} is the class defined as {M | (M ,~a) |= Φ for all m-tuples~a from the domains of M }.
FV(Φ)⊆ {x1 , . . . ,xm} and~a is an assignment of values to the free variables in Φ.

Assaf Kfoury, CS 511, Fall 2018, Handout 25 page 20 of 23

THE UNWIND PROPERTY

I Let S be a program scheme over some signature Σ with input variables X , {x1, . . . ,xm}.
We say S unwinds in a class C of Σ-structures iff there is a finite subset
{π1, . . . ,πk} ⊆ Paths(S) and corresponding finite subset {α1, . . . ,αk} ⊆ PathConstraints(S)
such that, for all M ∈ C and all inputs~a , (a1, . . . ,am) from the domains of M :

the execution of SM (~a) converges iff (M ,~a) |= α1 ∨ . . .∨αk .

Informally, only a finite set of k > 1 paths are used by converging executions of S. Put
differently, if S unwinds in the class C , then S is equivalent to a “trivial” (i.e., loop-free)
program scheme.

I Theorem 3: Let S be a program scheme over signature Σ with input variables
X , {x1, . . . ,xm}. Let Φ be a set (possibly infinite) of first-order WFF’s over
signature Σ with FV(Φ)⊆ X and let C , {M |M |= Φ}.1

If Φ enforces totality of S in the class C , then S unwinds in the class C .

In other words, we cannot constrain the interpretations in C for a program scheme
S by first-order conditions Φ in order to ensure termination – unless we also make
superfluous the presence of the loops in S.

1Strictly, {M |M |= Φ} is the class defined as {M | (M ,~a) |= Φ for all m-tuples~a from the domains of M }.
FV(Φ)⊆ {x1 , . . . ,xm} and~a is an assignment of values to the free variables in Φ.

Assaf Kfoury, CS 511, Fall 2018, Handout 25 page 21 of 23

THE UNWIND PROPERTY

I Proof Sketch for Theorem 3: By contradiction. Assume that Φ enforces totality of
S in the class C , but yet S does not unwind in the class C , and we then get a
contradiction.

Consider PathConstraints(S) = {α1,α2, . . .}. By the Corollary of Theorems 1 and
2 (see part 2 in particular), together with the preceding assumption, we must have:
For every k > 1 there is a Σ-structure M ∈ C and there are inputs
~a , (a1, . . . ,am) from the domains of M such that (M ,~a) |= Φ∪{¬α1, . . . ,¬αk}
(straightforward details of this argument are omitted).

Hence, for every k > 1, the set of first-order WFF’s Φ∪{¬α1, . . . ,¬αk} is
consistent. Hence, by Compactness of first-order logic, the full set
Φ∪{¬α1,¬α2, . . .} is consistent/satisfiable. Hence, there is a Σ-structure M ∈ C
and there are inputs~a , (a1, . . . ,am) from the domains of M such that
(M ,~a) |= Φ∪{¬α1,¬α2, . . .} and, in particular, (M ,~a) |= {¬α1,¬α2, . . .} which
implies that SM (~a) does not converge. But this contradicts the assumption that Φ

enforces totality of S in the class C (again, straightforward details are omitted).

Assaf Kfoury, CS 511, Fall 2018, Handout 25 page 22 of 23

(THIS PAGE INTENTIONALLY LEFT BLANK)

Assaf Kfoury, CS 511, Fall 2018, Handout 25 page 23 of 23

