CS 511, Fall 2018, Handout 25 Program Schemes and First-Order Logic

Assaf Kfoury

1 November 2018

Assaf Kfoury, CS 511, Fall 2018, Handout 25

PROGRAMS and PROGRAM SCHEMES

- Let P be a program in some program language (e.g., Python, Java, Haskell, C, etc.).
- P uses several primitive operators ("prim ops") (e.g., +, ×, ÷, div, mod, <=, !=, etc.)</p>
- P operates over one or several domains (e.g., Z, Q, B, etc.)

PROGRAMS and PROGRAM SCHEMES

- Let P be a program in some program language (e.g., Python, Java, Haskell, C, etc.).
- P uses several primitive operators ("prim ops") (e.g., +, ×, ÷, div, mod, <=, !=, etc.)</p>
- P operates over one or several domains (e.g., Z, Q, B, etc.)
- ▶ We obtain a program scheme *S* from *P* by omitting the meaning of all the prim ops and leaving them as uninterpreted functions and uninterpreted relations.
- S is thus the part of P that directs execution according to P's code, *i.e.*, S can be viewed as P's control structure which determines P's flow of execution.
- We recover *P* from *S* by restoring the meaning of all the prim ops.

PROGRAMS and PROGRAM SCHEMES

- Let P be a program in some program language (e.g., Python, Java, Haskell, C, etc.).
- P uses several primitive operators ("prim ops") (e.g., +, ×, ÷, div, mod, <=, !=, etc.)</p>
- P operates over one or several domains (e.g., Z, Q, B, etc.)
- ▶ We obtain a program scheme *S* from *P* by omitting the meaning of all the prim ops and leaving them as uninterpreted functions and uninterpreted relations.
- S is thus the part of P that directs execution according to P's code, *i.e.*, S can be viewed as P's control structure which determines P's flow of execution.
- We recover *P* from *S* by restoring the meaning of all the prim ops.
- Some of the material to follow in this handout is closely related to Handout 12 on Unwinding of Programs.

example: a PROGRAM P and corresponding PROGRAM SCHEME S

Euclidean GCD program

precondition :

- x > 0 and y > 0
- 1: $m := \min(x, y)$
- $2: \qquad n := \max(x, y)$
- 3: while $m \neq 0$
- $4: \qquad r:=(n \bmod m)$
- 5: n := m
- 6: m := r
- 7 : return *n*

example: a PROGRAM P and corresponding PROGRAM SCHEME S

Euclidean GCD program		corresponding program scheme		
	precondition :			precondition :
	x > 0 and $y > 0$			$\mathbf{R}(x,\mathbf{c}) \wedge \mathbf{R}(y,\mathbf{c})$
1:	$m := \min(x, y)$		1:	$m := \mathbf{lo}(x, y)$
2:	$n := \max(x, y)$		2:	$n := hi\left(x, y\right)$
3 :	while $m \neq 0$		3 :	while $\neg(m \doteq \mathbf{c})$
4:	$r := (n \mod m)$		4:	$r := \mathbf{f}(n,m)$
5:	n := m		5 :	n := m
6:	m := r		6:	m := r
7:	return n		7:	return n

example: a PROGRAM P and corresponding PROGRAM SCHEME S

Euclidean GCD program		correspon	corresponding program scheme	
	precondition :		precondition :	
	x > 0 and $y > 0$		$\mathbf{R}(x,\mathbf{c}) \wedge \mathbf{R}(y,\mathbf{c})$	
1:	$m := \min(x, y)$	1:	$m := \mathbf{lo}(x, y)$	
2:	$n := \max(x, y)$	2 :	n := hi(x, y)	
3:	while $m \neq 0$	3 :	while $\neg(m \doteq \mathbf{c})$	
4:	$r := (n \mod m)$	4 :	$r := \mathbf{f}(n,m)$	
5 :	n := m	5 :	n := m	
6:	m := r	6:	m := r	
7:	return n	7:	return n	

Program execution is fully determined by the values of input variables x and y, *i.e.*, by constraints exclusively involving x and y and none of the program/internal variables $\{m, n, r\}$, *e.g.*, consider the number of times the loop body $\{4, 5, 6\}$ is executed.

example: a PROGRAM ${\it P}$ and corresponding PROGRAM SCHEME ${\it S}$

Euclidean GCD program		corre	corresponding program scheme	
	precondition :			precondition :
	x > 0 and $y > 0$			$\mathbf{R}(x,\mathbf{c}) \wedge \mathbf{R}(y,\mathbf{c})$
1:	$m := \min(x, y)$		1:	$m := \mathbf{lo}(x, y)$
2:	$n := \max(x, y)$		2:	$n := \mathbf{hi}(x, y)$
3:	while $m \neq 0$		3:	while $\neg(m \doteq \mathbf{c})$
4:	$r := (n \mod m)$		4:	$r := \mathbf{f}(n,m)$
5 :	n := m		5:	n := m
6:	m := r		6:	m := r
7:	return n		7:	return n

Program execution is fully determined by the values of input variables x and y, *i.e.*, by constraints exclusively involving x and y and none of the program/internal variables $\{m, n, r\}$, *e.g.*, consider the number of times the loop body $\{4, 5, 6\}$ is executed.

For example, $\{4, 5, 6\}$ is executed twice iff: $\min(x, y) \neq 0$ & $\max(x, y) \mod \min(x, y) \neq 0$ & $\min(x, y) \mod (\max(x, y) \mod \min(x, y)) = 0$

example: a PROGRAM ${\it P}$ and corresponding PROGRAM SCHEME ${\it S}$

Euclidean GCD program		correspon	corresponding program scheme	
	precondition :		precondition :	
	x > 0 and $y > 0$		$\mathbf{R}(x,\mathbf{c}) \wedge \mathbf{R}(y,\mathbf{c})$	
1:	$m := \min(x, y)$	1:	$m := \mathbf{lo}\left(x, y\right)$	
2:	$n := \max(x, y)$	2:	$n := hi\left(x, y\right)$	
3:	while $m \neq 0$	3 :	while $\neg(m \doteq \mathbf{c})$	
4:	$r := (n \mod m)$	4:	$r := \mathbf{f}(n,m)$	
5 :	n := m	5 :	n := m	
6:	m := r	6:	m := r	
7:	return n	7:	return n	

Program execution is fully determined by the values of input variables x and y, *i.e.*, by constraints exclusively involving x and y and none of the program/internal variables $\{m, n, r\}$, *e.g.*, consider the number of times the loop body $\{4, 5, 6\}$ is executed.

For example, {4,5,6} is executed twice iff: $\min(x, y) \neq 0 \quad \& \qquad \neg(\log x y \doteq c)$ $\max(x, y) \mod \min(x, y) \neq 0 \quad \& \qquad \neg(f(\operatorname{hi} x y, \log x))$ $\min(x, y) \mod (\max(x, y) \mod \min(x, y)) = 0 \qquad f(\log x y, f(\operatorname{hi} x))$ Assaf Kfoury, CS 511, Fall 2018, Handout 25

$$\neg (\mathbf{lo} x y \doteq \mathbf{c}) \land \\ \neg (\mathbf{f} (\mathbf{hi} x y, \mathbf{lo} x y) \doteq \mathbf{c}) \land \\ \mathbf{f} (\mathbf{lo} x y, \mathbf{f} (\mathbf{hi} x y, \mathbf{lo} x y)) \doteq \mathbf{c}$$

example: unwinding a PROGRAM SCHEME into an INFINITE FLOW DIAGRAM

precondition : $\mathbf{R}(x, \mathbf{c}) \wedge \mathbf{R}(y, \mathbf{c})$

- 1: $m := \log(x, y)$
- 2: $n := \operatorname{hi}(x, y)$
- 3: if $\neg(m \doteq \mathbf{c})$ then (7: return *n*) else
- 4: r := f(m, n)
- 5: n := m
- 6: m := r
- 3: if $\neg(m \doteq \mathbf{c})$ then (7: return *n*) else
- 4: $r := \mathbf{f}(m, n)$
- 5: n := m
- 6: m := r
- 3: if $\neg(m \doteq \mathbf{c})$ then (7: return *n*) else
- 4: r := f(m, n)
- 5: n := m
- 6: m := r

÷ ÷

• •

example: unwinding a PROGRAM SCHEME into an INFINITE FLOW DIAGRAM

precondition : $\mathbf{R}(x, \mathbf{c}) \wedge \mathbf{R}(y, \mathbf{c})$

1: $m := \log(x, y)$

$$2: \qquad n := \mathbf{hi}(x, y)$$

- 3: if $\neg(m \doteq \mathbf{c})$ then (7: return *n*) else
- 4: $r := \mathbf{f}(m, n)$
- 5: n := m
- 6: m := r
- 3: if $\neg(m \doteq \mathbf{c})$ then (7: return *n*) else
- 4: $r := \mathbf{f}(m, n)$
- 5: n := m
- 6: m := r
- 3: if $\neg(m \doteq c)$ then (7: return n) else
- $4: \qquad r:=\mathbf{f}(m,n)$
- 5: n := m
- 6: m := r
- ÷ ÷
- •

- every diverging execution is described by an infinite sequence of instruction labels of the form: 1 2 (3 4 5 6)^ω
- every converging execution is described by a finite sequence of instruction labels of the form: 1 2 (3 4 5 6)* 3 7

example: unwinding a PROGRAM SCHEME into an INFINITE FLOW DIAGRAM

precondition : $\mathbf{R}(x,\mathbf{c}) \wedge \mathbf{R}(y,\mathbf{c})$ 1: $m := \mathbf{lo}(x, y)$ 2. n := hi(x, y)3: if $\neg(m \doteq \mathbf{c})$ then (7: return *n*) else $4 \cdot$ $r := \mathbf{f}(m, n)$ 5: n := m6: m := r3. if $\neg(m \doteq \mathbf{c})$ then (7: return *n*) else $4 \cdot$ $r := \mathbf{f}(m, n)$ 5: n := m6: m := r3. if $\neg(m \doteq c)$ then (7: return n) else $4 \cdot$ $r := \mathbf{f}(m, n)$ 5: n := m6 · m := r÷

- every diverging execution is described by an infinite sequence of instruction labels of the form: $12(3456)^{\omega}$
- every converging execution is described by a finite sequence of instruction labels of the form: 12(3456)*37
- every diverging execution is specified by an infinite set of quantifier-free first-order WFF's over the signature $\{\mathbf{R}, \mathbf{lo}, \mathbf{hi}, \mathbf{f}, \mathbf{c}\}$ and input variables $\{x, y\}$
- every converging execution is specified by a finite set of quantifier-free first-order WFF's over the signature $\{\mathbf{R}, \mathbf{lo}, \mathbf{hi}, \mathbf{f}, \mathbf{c}\}$ and input variables $\{x, y\}$

5

- Let P be a deterministic sequential program whose prim ops are the interpretations of the predicate symbols and function symbols of a signature Σ in a Σ-structure M.
- ▶ Let $X \triangleq \{x_1, ..., x_m\}$, $Y \triangleq \{y_1, ..., y_n\}$, and $Z \triangleq \{z_1, ..., z_p\}$, be input variables, output variables, and program variables of *P*, with $m \ge 1$, $n \ge 0$, and $p \ge 0$.

In particular, an execution of P is triggered by an assignment of values from the domains of \mathcal{M} to the input variables X. If and when an execution of P terminates, the returned output is the set of values stored in the variables Y.

Let S be the program scheme corresponding to program P, i.e., the interpretation of S in *M*, denoted S^M, is exactly P.

Let P be a deterministic sequential program whose prim ops are the interpretations of the predicate symbols and function symbols of a signature Σ in a Σ-structure M.

▶ Let $X \triangleq \{x_1, ..., x_m\}$, $Y \triangleq \{y_1, ..., y_n\}$, and $Z \triangleq \{z_1, ..., z_p\}$, be input variables, output variables, and program variables of *P*, with $m \ge 1$, $n \ge 0$, and $p \ge 0$.

In particular, an execution of *P* is triggered by an assignment of values from the domains of \mathcal{M} to the input variables *X*. If and when an execution of *P* terminates, the returned output is the set of values stored in the variables *Y*.

Let S be the program scheme corresponding to program P, i.e., the interpretation of S in *M*, denoted S^M, is exactly P.

► **Theorem 1:** Let $Paths(S) \triangleq \{\pi_1, \pi_2, ...\}$ be the set of all finite execution paths in program scheme *S*. Let every test in *S* be a first-order WFF φ over signature Σ with $FV(\varphi) \subseteq X \cup Y \cup Z$.

For every $\pi_i \in Paths(S)$ there is a first-order WFF α_i over Σ with $FV(\alpha_i) \subseteq \{x_1, \ldots, x_m\}$ such that for every execution of $P = S^{\mathscr{M}}$ on input values $\vec{a} \triangleq (a_1, \ldots, a_m)$:

the execution converges by following path π_i iff $(\mathscr{M}, \vec{a}) \models \alpha_i$.

► Let *PathConstraints*(S) \triangleq { $\alpha_1, \alpha_2, ...$ } be the first-order WFF's thus defined over signature Σ with free variables in X.

Assaf Kfoury, CS 511, Fall 2018, Handout 25

- Theorem 2 is a weaker version of Theorem 1 that applies to common programming languages (Python, Java, Haskell, C, etc.) – why?
- Theorem 2: Let Paths(S) ≜ {π₁, π₂,...} be the set of all finite execution paths in program scheme S. Let every test in S be a first-order literal (*i.e.*, an atomic or negated atomic WFF) over signature Σ with variables in X ∪ Y ∪ Z.

For every $\pi_i \in Paths(S)$ there is a conjunction α_i of literals over Σ with variables in $\{x_1, \ldots, x_m\}$ such that for every execution of $P = S^{\mathscr{M}}$ on input values $\vec{a} \triangleq (a_1, \ldots, a_m)$:

the execution converges by following path π_i iff $(\mathscr{M}, \vec{a}) \models \alpha_i$.

► Let *S* be a program scheme whose prim ops are in the signature Σ and whose input variables are $X = \{x_1, \ldots, x_m\}$. Let \mathscr{C} be a class of Σ -structures. Let $\Phi \triangleq \{\varphi_1, \varphi_2, \ldots\}$ be a set (possibly infinite) of first-order WFF's over signature Σ with FV(φ_i) $\subseteq \{x_1, \ldots, x_m\}$ for every $i \ge 1$.

We say that Φ enforces totality of program scheme *S* (*i.e.*, termination/convergence of all executions by *S*) in the class \mathscr{C} iff:

for every $\mathscr{M} \in \mathscr{C}$ and every *m*-tuple $\vec{a} \triangleq (a_1, \ldots, a_m)$ of inputs

from the domains of \mathcal{M} , if $(\mathcal{M}, \vec{a}) \models \Phi$ then the execution of $S^{\mathcal{M}}(\vec{a})$ converges.

Let *S* be a program scheme whose prim ops are in the signature Σ and whose input variables are $X = \{x_1, \ldots, x_m\}$. Let \mathscr{C} be a class of Σ -structures. Let $\Phi \triangleq \{\varphi_1, \varphi_2, \ldots\}$ be a set (possibly infinite) of first-order WFF's over signature Σ with FV(φ_i) $\subseteq \{x_1, \ldots, x_m\}$ for every $i \ge 1$.

We say that Φ enforces totality of program scheme *S* (*i.e.*, termination/convergence of all executions by *S*) in the class \mathscr{C} iff:

termination/convergence of all executions by 5) in the class @ in.

for every $\mathscr{M} \in \mathscr{C}$ and every *m*-tuple $\vec{a} \triangleq (a_1, \ldots, a_m)$ of inputs

from the domains of \mathscr{M} , if $(\mathscr{M}, \vec{a}) \models \Phi$ then the execution of $S^{\mathscr{M}}(\vec{a})$ converges.

Corollary: The following are equivalent statements:

- 1. $\Phi \triangleq \{\varphi_1, \varphi_2, \ldots\}$ enforces totality of program scheme *S* in class \mathscr{C} .
- For every *M* ∈ *C* and all inputs *a* ≜ (a₁,...,a_m) from the domains of *M*, it holds that if (*M*, *a*) ⊨ Φ then (*M*, *a*) ⊨ V_{i≥1} α_j.
- 3. For every $\mathscr{M} \in \mathscr{C}$ and all inputs $\vec{a} \triangleq (a_1, \ldots, a_m)$ from the domains of \mathscr{M} , it holds that $(\mathscr{M}, \vec{a}) \models (\bigwedge_{i \geqslant 1} \varphi_i \to \bigvee_{j \geqslant 1} \alpha_j)$.

4. For every $\mathscr{M} \in \mathscr{C}$, it holds that $\mathscr{M} \models \forall \vec{x} (\bigwedge_{i \ge 1} \varphi_i \to \bigvee_{i \ge 1} \alpha_i)$.

Note: If Φ is an infinite set, then $\bigwedge_{i \ge 1} \varphi_i$ is an *infinitary conjunction*, and thus *not* in the syntax of first-order logic. Likewise, $\bigvee_{i \ge 1} \alpha_i$ is an *infinitary disjunction*, and thus *not* in the syntax of first-order logic, when *PathConstraints*(*S*) = { $\alpha_1, \alpha_2, \ldots$ } is an infinite set.

HOW STRONG CAN WE HOPE TO MAKE THE PRECONDITIONS?

• We think of Φ as a set of *formal preconditions* for program scheme *S*.

Question: Given an arbitrary program scheme S, can we formulate the preconditions Φ , as a set of first-order WFF's, to enforce totality of S?

HOW STRONG CAN WE HOPE TO MAKE THE PRECONDITIONS?

• We think of Φ as a set of *formal preconditions* for program scheme *S*.

Question: Given an arbitrary program scheme *S*, can we formulate the preconditions Φ , as a set of first-order WFF's, to enforce totality of *S*?

• **Exercise:** Let *S* be an arbitrary program scheme over some signature Σ with input variables $X \triangleq \{x_1, \ldots, x_m\}$.

Define an infinitary WFF Ψ (**note:** Ψ is not restricted to be first-order) over signature Σ with FV(Ψ) \subseteq X such that for every Σ -structure \mathscr{M} and all inputs $\vec{a} \triangleq (a_1, \ldots, a_m)$ from the domains of \mathscr{M} , it holds that

if $(\mathscr{M}, \vec{a}) \models \Psi$ then the execution of $S^{\mathscr{M}}(\vec{a})$ converges .

In words, Ψ enforces totality of S in all $\Sigma\text{-structures }\mathcal{M},$ not restricted to any particular class.

THE UNWIND PROPERTY

Let *S* be a program scheme over some signature Σ with input variables $X \triangleq \{x_1, ..., x_m\}$. We say *S* **unwinds** in a class \mathscr{C} of Σ -structures iff there is a finite subset $\{\pi_1, ..., \pi_k\} \subseteq PathS(S)$ and corresponding finite subset $\{\alpha_1, ..., \alpha_k\} \subseteq PathConstraints(S)$ such that, for all $\mathscr{M} \in \mathscr{C}$ and all inputs $\vec{a} \triangleq (a_1, ..., a_m)$ from the domains of \mathscr{M} :

the execution of $S^{\mathscr{M}}(\vec{a})$ converges iff $(\mathscr{M},\vec{a})\models lpha_1\vee\ldots\vee lpha_k$.

Informally, only a finite set of $k \ge 1$ paths are used by converging executions of *S*. Put differently, if *S* unwinds in the class \mathscr{C} , then *S* is equivalent to a "trivial" (*i.e.*, loop-free) program scheme.

¹Strictly, $\{\mathscr{M} \mid \mathscr{M} \models \Phi\}$ is the class defined as $\{\mathscr{M} \mid (\mathscr{M}, \vec{a}) \models \Phi$ for all *m*-tuples \vec{a} from the domains of $\mathscr{M}\}$. FV(Φ) $\subseteq \{x_1, \ldots, x_m\}$ and \vec{a} is an assignment of values to the free variables in Φ .

THE UNWIND PROPERTY

Let *S* be a program scheme over some signature Σ with input variables $X \triangleq \{x_1, ..., x_m\}$. We say *S* unwinds in a class \mathscr{C} of Σ -structures iff there is a finite subset $\{\pi_1, ..., \pi_k\} \subseteq Paths(S)$ and corresponding finite subset $\{\alpha_1, ..., \alpha_k\} \subseteq PathConstraints(S)$ such that, for all $\mathscr{M} \in \mathscr{C}$ and all inputs $\vec{a} \triangleq (a_1, ..., a_m)$ from the domains of \mathscr{M} :

the execution of $S^{\mathscr{M}}(\vec{a})$ converges iff $(\mathscr{M},\vec{a})\models lpha_1\vee\ldots\vee lpha_k$.

Informally, only a finite set of $k \ge 1$ paths are used by converging executions of *S*. Put differently, if *S* unwinds in the class \mathscr{C} , then *S* is equivalent to a "trivial" (*i.e.*, loop-free) program scheme.

► **Theorem 3:** Let *S* be a program scheme over signature Σ with input variables $X \triangleq \{x_1, \ldots, x_m\}$. Let Φ be a set (possibly infinite) of first-order WFF's over signature Σ with FV(Φ) $\subseteq X$ and let $\mathscr{C} \triangleq \{\mathscr{M} \mid \mathscr{M} \models \Phi\}$.¹

If Φ enforces totality of *S* in the class \mathscr{C} , then *S* unwinds in the class \mathscr{C} .

In other words, we cannot constrain the interpretations in \mathscr{C} for a program scheme S by first-order conditions Φ in order to ensure termination – unless we also make superfluous the presence of the loops in S.

¹Strictly, $\{\mathscr{M} \mid \mathscr{M} \models \Phi\}$ is the class defined as $\{\mathscr{M} \mid (\mathscr{M}, \vec{a}) \models \Phi$ for all *m*-tuples \vec{a} from the domains of $\mathscr{M}\}$. FV(Φ) $\subseteq \{x_1, \dots, x_m\}$ and \vec{a} is an assignment of values to the free variables in Φ .

THE UNWIND PROPERTY

Consider *PathConstraints*(S) = { $\alpha_1, \alpha_2, ...$ }. By the Corollary of Theorems 1 and 2 (see part 2 in particular), together with the preceding assumption, we must have: For every $k \ge 1$ there is a Σ -structure $\mathscr{M} \in \mathscr{C}$ and there are inputs $\vec{a} \triangleq (a_1, ..., a_m)$ from the domains of \mathscr{M} such that $(\mathscr{M}, \vec{a}) \models \Phi \cup \{\neg \alpha_1, ..., \neg \alpha_k\}$ (straightforward details of this argument are omitted).

Hence, for every $k \ge 1$, the set of first-order WFF's $\Phi \cup \{\neg \alpha_1, \ldots, \neg \alpha_k\}$ is consistent. Hence, by Compactness of first-order logic, the full set $\Phi \cup \{\neg \alpha_1, \neg \alpha_2, \ldots\}$ is consistent/satisfiable. Hence, there is a Σ -structure $\mathscr{M} \in \mathscr{C}$ and there are inputs $\vec{a} \triangleq (a_1, \ldots, a_m)$ from the domains of \mathscr{M} such that $(\mathscr{M}, \vec{a}) \models \Phi \cup \{\neg \alpha_1, \neg \alpha_2, \ldots\}$ and, in particular, $(\mathscr{M}, \vec{a}) \models \{\neg \alpha_1, \neg \alpha_2, \ldots\}$ which implies that $S^{\mathscr{M}}(\vec{a})$ does not converge. But this contradicts the assumption that Φ enforces totality of *S* in the class \mathscr{C} (again, straightforward details are omitted).

(THIS PAGE INTENTIONALLY LEFT BLANK)