CS 511, Fall 2018, Handout 26 Gilmore's Algorithm

Assaf Kfoury

November 5, 2018

Assaf Kfoury, CS 511, Fall 2018, Handout 26

From the handout *Compactness+Completeness* (click here to retrieve it):

- If φ is a first-order sentence, then $\Theta_{\text{pr,sk}}(\varphi)$ is its Skolem form.
- In particular, Θ_{pr,sk}(φ) is a universal first-order sentence, *i.e.*, it is in prenex normal form and all the quantifiers in its prenex are universal.

 φ and $\Theta_{\text{pr,sk}}(\varphi)$ are equisatisfiable (Lemma 21 in *Compactness+Completeness*).

From the handout *Compactness+Completeness* (click here to retrieve it):

- If φ is a first-order sentence, then $\Theta_{\text{pr,sk}}(\varphi)$ is its Skolem form.
- In particular, Θ_{pr,sk}(φ) is a universal first-order sentence, *i.e.*, it is in prenex normal form and all the quantifiers in its prenex are universal.
- φ and $\Theta_{\text{pr,sk}}(\varphi)$ are equisatisfiable (Lemma 21 in *Compactness+Completeness*).
- Gr_Expansion $(\Theta_{pr,sk}(\varphi))$ is obtained by deleting the prenex of $\Theta_{pr,sk}(\varphi)$ and substituting ground terms for variables in the matrix of $\Theta_{pr,sk}(\varphi)$.
 - φ and Gr_Expansion $(\Theta_{\text{pr,sk}}(\varphi))$ are equisatisfiable (Lemma 28 in *Compactness+Completeness*).

From the handout *Compactness+Completeness* (click here to retrieve it):

- If φ is a first-order sentence, then $\Theta_{\text{pr,sk}}(\varphi)$ is its Skolem form.
- In particular, Θ_{pr,sk}(φ) is a universal first-order sentence, *i.e.*, it is in prenex normal form and all the quantifiers in its prenex are universal.
- φ and $\Theta_{\text{pr,sk}}(\varphi)$ are equisatisfiable (Lemma 21 in *Compactness+Completeness*).
- Gr_Expansion $(\Theta_{pr,sk}(\varphi))$ is obtained by deleting the prenex of $\Theta_{pr,sk}(\varphi)$ and substituting ground terms for variables in the matrix of $\Theta_{pr,sk}(\varphi)$.
- φ and Gr_Expansion($\Theta_{pr,sk}(\varphi)$) are equisatisfiable (Lemma 28 in *Compactness+Completeness*).
- $\begin{array}{l} \blacktriangleright \hspace{0.1cm} \mathcal{X}\big(\mathrm{Gr}_{-}\mathrm{Expansion}\big(\boldsymbol{\Theta}_{\mathrm{pr},\mathrm{sk}}(\varphi)\big)\big) \text{ is obtained by replacing every ground atom} \\ \alpha \text{ in } \mathrm{Gr}_{-}\mathrm{Expansion}\big(\boldsymbol{\Theta}_{\mathrm{pr},\mathrm{sk}}(\varphi)\big) \text{ by a propositional variable } X_{\alpha}. \end{array}$

 φ is satisfiable (in first-order logic) iff $\mathcal{X}(Gr_Expansion(\Theta_{pr,sk}(\varphi)))$ is satisfiable (in propositional logic). (Theorem 32 in *Compactness+Completeness*).

 φ is satisfiable (in first-order logic) iff

 $\mathcal{X}(Gr_Expansion(\Theta_{pr,sk}(\varphi)))$ is **finitely** satisfiable (in prop logic).

(Theorem 2 in Compactness+Completeness)

 φ is satisfiable (in first-order logic) iff

 $\mathcal{X}(Gr_Expansion(\Theta_{pr,sk}(\varphi)))$ is **finitely** satisfiable (in prop logic).

(Theorem 2 in Compactness+Completeness)

Contrapositively:

 φ is <u>not</u> satisfiable (in first-order logic) iff there is a <u>finite</u> subset of $\mathcal{X}(Gr_Expansion(\Theta_{pr,sk}(\varphi)))$ which is <u>not</u> satisfiable (in propositional logic).

 φ is satisfiable (in first-order logic) iff

 $\mathcal{X}(Gr_Expansion(\Theta_{pr,sk}(\varphi)))$ is **finitely** satisfiable (in prop logic).

(Theorem 2 in Compactness+Completeness)

Contrapositively:

 φ is <u>not</u> satisfiable (in first-order logic) iff there is a <u>finite</u> subset of $\mathcal{X}(Gr_Expansion(\Theta_{pr,sk}(\varphi)))$ which is <u>not</u> satisfiable (in propositional logic).

Recall that a first-order sentence ψ is **valid** iff $\neg \psi$ is **not** satisfiable.

Suppose we want to test whether a first-order sentence ψ is valid. Let

$$\mathcal{X}(\mathsf{Gr}_{\mathsf{Expansion}}(\boldsymbol{\Theta}_{\mathrm{pr,sk}}(\neg \psi))) = \{\theta_1, \ \theta_2, \ \theta_3, \ldots\}$$

Note the inserted logical negation " \neg ". All the θ_i 's are propositional WFF's.

 φ is satisfiable (in first-order logic) iff

 $\mathcal{X}(Gr_Expansion(\Theta_{pr,sk}(\varphi)))$ is **finitely** satisfiable (in prop logic).

(Theorem 2 in Compactness+Completeness)

Contrapositively:

 φ is <u>not</u> satisfiable (in first-order logic) iff there is a <u>finite</u> subset of $\mathcal{X}(Gr_Expansion(\Theta_{pr,sk}(\varphi)))$ which is <u>not</u> satisfiable (in propositional logic).

Recall that a first-order sentence ψ is **valid** iff $\neg \psi$ is **not** satisfiable.

Suppose we want to test whether a first-order sentence ψ is valid. Let

$$\mathcal{X}(\mathsf{Gr}_{\mathsf{Expansion}}(\boldsymbol{\Theta}_{\mathrm{pr,sk}}(\neg \psi))) = \{\theta_1, \ \theta_2, \ \theta_3, \ldots\}$$

Note the inserted logical negation " \neg ". All the θ_i 's are propositional WFF's.

 ψ is **valid** (in first-order logic) iff

• there is a <u>finite</u> subset of $\{\theta_1, \theta_2, \theta_3, ...\}$ which is <u>not</u> satisfiable (in propositional logic).

- 1. **input**: first-order sentence ψ to be tested for validity;
- **2**. k := 0;
- 3. repeat k := k + 1generate first k wff's $\{\theta_1, \ldots, \theta_k\}$ in $\mathcal{X}(\text{Gr}_{\text{Expansion}}(\Theta_{\text{pr,sk}}(\neg \psi)))$ until $\bigwedge_{1 \leq i \leq k} \theta_i$ is unsatisfiable;
- 4. **output**: ψ is valid;

- 1. **input**: first-order sentence ψ to be tested for validity;
- **2**. k := 0;
- 3. repeat k := k + 1generate first k wff's $\{\theta_1, \ldots, \theta_k\}$ in $\mathcal{X}(\text{Gr}_\text{Expansion}(\Theta_{\text{pr,sk}}(\neg \psi)))$ until $\bigwedge_{1 \leq i \leq k} \theta_i$ is unsatisfiable;
- 4. **output**: ψ is valid;
- Fact: Gilmore's algorithm terminates iff the input sentence ψ is valid.
- Major Drawback: Gilmore's algorithm is highly inefficient, its performance depends on the order in which the θ_i's are generated.

- 1. **input**: first-order sentence ψ to be tested for validity;
- **2**. k := 0;
- 3. repeat k := k + 1generate first k wff's $\{\theta_1, \ldots, \theta_k\}$ in $\mathcal{X}(\text{Gr}_\text{Expansion}(\Theta_{\text{pr,sk}}(\neg \psi)))$ until $\bigwedge_{1 \leq i \leq k} \theta_i$ is unsatisfiable;
- 4. output: ψ is valid;
- **Fact**: Gilmore's algorithm terminates iff the input sentence ψ is valid.
- Major Drawback: Gilmore's algorithm is highly inefficient, its performance depends on the order in which the θ_i's are generated.

Exercise: Let $\varphi_1, \ldots, \varphi_n$ and ψ be first-order sentences. Define an algorithm based on Gilmore's algorithm which terminates iff the semantic entailment $\varphi_1, \ldots, \varphi_n \models \psi$ holds.

Problem: Can you define an algorithm \mathcal{A} which, given a first-order sentence ψ , always terminates and decides whether ψ is valid or not valid? *Hint*: No.

- Gilmore's algorithm is said to be a semi-decision procedure, because it terminates only if the input \u03c6 is valid.
- Gilmore's algorithm was invented in the late 1950's and it was the best semi-decision procedure for first-order validity until the mid-1960's, when more efficient early versions of the tableaux and resolution methods were first introduced.

(THIS PAGE INTENTIONALLY LEFT BLANK)