CS 511, Fall 2018, Handout 26

Gilmore's Algorithm

Assaf Kfoury

November 5, 2018

review and reminders (run simultaneously with an example on the board)

From the handout Compactness+Completeness (click here to retrieve it):

- If φ is a first-order sentence, then $\Theta_{\mathrm{pr}, \mathrm{sk}}(\varphi)$ is its Skolem form.
- In particular, $\Theta_{\mathrm{pr,sk}}(\varphi)$ is a universal first-order sentence, i.e., it is in prenex normal form and all the quantifiers in its prenex are universal.
- φ and $\Theta_{\mathrm{pr}, \mathrm{sk}}(\varphi)$ are equisatisfiable
(Lemma 21 in Compactness+Completeness).

review and reminders

From the handout Compactness+Completeness (click here to retrieve it):

- If φ is a first-order sentence, then $\Theta_{\mathrm{pr}, \text { sk }}(\varphi)$ is its Skolem form.
- In particular, $\Theta_{\mathrm{pr}, \mathrm{sk}}(\varphi)$ is a universal first-order sentence, i.e., it is in prenex normal form and all the quantifiers in its prenex are universal.
- φ and $\Theta_{\mathrm{pr}, \text { sk }}(\varphi)$ are equisatisfiable (Lemma 21 in Compactness+Completeness).
- Gr _Expansion $\left(\Theta_{\mathrm{pr}, \mathrm{sk}}(\varphi)\right)$ is obtained by deleting the prenex of $\Theta_{\mathrm{pr}, \mathrm{sk}}(\varphi)$ and substituting ground terms for variables in the matrix of $\Theta_{\mathrm{pr}, \mathrm{sk}}(\varphi)$.
- φ and Gr Expansion $\left(\Theta_{\mathrm{pr}, \mathrm{sk}}(\varphi)\right)$ are equisatisfiable
(Lemma 28 in Compactness+Completeness).

review and reminders

From the handout Compactness+Completeness (click here to retrieve it):

- If φ is a first-order sentence, then $\Theta_{\mathrm{pr,sk}}(\varphi)$ is its Skolem form.
- In particular, $\Theta_{\mathrm{pr}, \mathrm{sk}}(\varphi)$ is a universal first-order sentence, i.e., it is in prenex normal form and all the quantifiers in its prenex are universal.
- φ and $\Theta_{\mathrm{pr}, \mathrm{sk}}(\varphi)$ are equisatisfiable (Lemma 21 in Compactness+Completeness).
- Gr _Expansion $\left(\Theta_{\mathrm{pr}, \mathrm{sk}}(\varphi)\right)$ is obtained by deleting the prenex of $\Theta_{\mathrm{pr}, \mathrm{sk}}(\varphi)$ and substituting ground terms for variables in the matrix of $\Theta_{\mathrm{pr}, \mathrm{sk}}(\varphi)$.
- φ and Gr _Expansion $\left(\Theta_{\mathrm{pr}, \text { sk }}(\varphi)\right)$ are equisatisfiable
(Lemma 28 in Compactness + Completeness).
- $\mathcal{X}\left(\operatorname{Gr}\right.$ Expansion $\left.\left(\boldsymbol{\Theta}_{\mathrm{pr}, \mathrm{sk}}(\varphi)\right)\right)$ is obtained by replacing every ground atom α in Gr-Expansion $\left(\Theta_{\mathrm{pr}, \mathrm{kk}}(\varphi)\right)$ by a propositional variable X_{α}.
φ is satisfiable (in first-order logic) iff
$\mathcal{X}\left(\operatorname{Gr}\right.$ Expansion $\left.\left(\Theta_{\mathrm{pr}, \text { sk }}(\varphi)\right)\right)$ is satisfiable (in propositional logic).
(Theorem 32 in Compactness+Completeness).

review and reminders

φ is satisfiable (in first-order logic) iff
$\mathcal{X}\left(\operatorname{Gr}\right.$ Expansion $\left.\left(\Theta_{\mathrm{pr}, \mathrm{sk}}(\varphi)\right)\right)$ is finitely satisfiable (in prop logic).
(Theorem 2 in Compactness+Completeness)

review and reminders

φ is satisfiable (in first-order logic) iff
$\mathcal{X}\left(\operatorname{Gr}\right.$ Expansion $\left.\left(\Theta_{\text {pr,sk }}(\varphi)\right)\right)$ is finitely satisfiable (in prop logic).
(Theorem 2 in Compactness+Completeness)

- Contrapositively:
φ is not satisfiable (in first-order logic) iff there is a finite subset of $\mathcal{X}\left(\operatorname{Gr}_{\text {_Expansion }}\left(\Theta_{\mathrm{pr}, \mathrm{sk}}(\varphi)\right)\right)$ which is not satisfiable (in propositional logic).

review and reminders

φ is satisfiable (in first-order logic) iff
$\mathcal{X}\left(\operatorname{Gr}\right.$ Expansion $\left.\left(\Theta_{\text {pr,sk }}(\varphi)\right)\right)$ is finitely satisfiable (in prop logic).
(Theorem 2 in Compactness+Completeness)

- Contrapositively:
φ is not satisfiable (in first-order logic) iff there is a finite subset of $\mathcal{X}\left(\operatorname{Gr}_{_} E x p a n s i o n\left(\Theta_{\mathrm{pr}, \mathrm{sk}}(\varphi)\right)\right)$ which is not satisfiable (in propositional logic).
- Recall that a first-order sentence ψ is valid iff $\neg \psi$ is not satisfiable .

Suppose we want to test whether a first-order sentence ψ is valid. Let

$$
\mathcal{X}\left(\underset{\operatorname{Gr}}{ } \text { Expansion }\left(\boldsymbol{\Theta}_{\mathrm{pr}, \mathrm{sk}}(\neg \psi)\right)\right)=\left\{\theta_{1}, \theta_{2}, \theta_{3}, \ldots\right\}
$$

Note the inserted logical negation " \neg ". All the θ_{i} 's are propositional WFF's.

review and reminders

φ is satisfiable (in first-order logic) iff
$\mathcal{X}\left(\operatorname{Gr}\right.$ Expansion $\left.\left(\Theta_{\text {pr,sk }}(\varphi)\right)\right)$ is finitely satisfiable (in prop logic).
(Theorem 2 in Compactness+Completeness)

- Contrapositively:
φ is not satisfiable (in first-order logic) iff there is a finite subset of $\mathcal{X}\left(\operatorname{Gr}_{\text {_Expansion }}\left(\Theta_{\mathrm{pr}, \mathrm{sk}}(\varphi)\right)\right)$ which is not satisfiable (in propositional logic).
- Recall that a first-order sentence ψ is valid iff $\neg \psi$ is not satisfiable .

Suppose we want to test whether a first-order sentence ψ is valid. Let

$$
\mathcal{X}\left(\operatorname{Gr} \operatorname{Expansion}\left(\boldsymbol{\Theta}_{\mathrm{pr}, \mathrm{sk}}(\neg \psi)\right)\right)=\left\{\theta_{1}, \theta_{2}, \theta_{3}, \ldots\right\}
$$

Note the inserted logical negation " \neg ". All the θ_{i} 's are propositional WFF's.
ψ is valid (in first-order logic) iff

- there is a finite subset of $\left\{\theta_{1}, \theta_{2}, \theta_{3}, \ldots\right\}$ which is not satisfiable (in propositional logic).

Gilmore's algorithm

1. input: first-order sentence ψ to be tested for validity ;
2. $k:=0$;
3. repeat $k:=k+1$
generate first k wff's $\left\{\theta_{1}, \ldots, \theta_{k}\right\}$ in $\mathcal{X}\left(\operatorname{Gr}\right.$ Expansion $\left.\left(\Theta_{\mathrm{pr}, \mathrm{sk}}(\neg \psi)\right)\right)$ until $\bigwedge_{1 \leqslant i \leqslant k} \theta_{i}$ is unsatisfiable;
4. output: ψ is valid;

Gilmore's algorithm

1. input: first-order sentence ψ to be tested for validity ;
2. $k:=0$;
3. repeat $k:=k+1$
generate first k wff's $\left\{\theta_{1}, \ldots, \theta_{k}\right\}$ in $\mathcal{X}\left(\operatorname{Gr}\right.$ _Expansion $\left.\left(\boldsymbol{\Theta}_{\mathrm{pr}, \mathrm{sk}}(\neg \psi)\right)\right)$ until $\bigwedge_{1 \leqslant i \leqslant k} \theta_{i}$ is unsatisfiable;
4. output: ψ is valid;

- Fact: Gilmore's algorithm terminates iff the input sentence ψ is valid.
- Major Drawback: Gilmore's algorithm is highly inefficient, its performance depends on the order in which the θ_{i} 's are generated.

Gilmore's algorithm

1. input: first-order sentence ψ to be tested for validity ;
2. $k:=0$;
3. repeat $k:=k+1$
generate first k wff's $\left\{\theta_{1}, \ldots, \theta_{k}\right\}$ in $\mathcal{X}\left(\operatorname{Gr}\right.$ _Expansion $\left.\left(\boldsymbol{\Theta}_{\mathrm{pr}, \mathrm{sk}}(\neg \psi)\right)\right)$ until $\bigwedge_{1 \leqslant i \leqslant k} \theta_{i}$ is unsatisfiable;
4. output: ψ is valid;

- Fact: Gilmore's algorithm terminates iff the input sentence ψ is valid.
- Major Drawback: Gilmore's algorithm is highly inefficient, its performance depends on the order in which the θ_{i} 's are generated.

Exercise: Let $\varphi_{1}, \ldots, \varphi_{n}$ and ψ be first-order sentences.
Define an algorithm based on Gilmore's algorithm which terminates iff the semantic entailment $\varphi_{1}, \ldots, \varphi_{n} \models \psi$ holds.

Problem: Can you define an algorithm \mathcal{A} which, given a first-order sentence ψ, always terminates and decides whether ψ is valid or not valid? Hint: No.

Gilmore's algorithm

- Gilmore's algorithm is said to be a semi-decision procedure, because it terminates only if the input ψ is valid.
- Gilmore's algorithm was invented in the late 1950's and it was the best semi-decision procedure for first-order validity until the mid-1960's, when more efficient early versions of the tableaux and resolution methods were first introduced.

(THIS PAGE INTENTIONALLY LEFT BLANK)

