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(unweighted) MaxSAT problem

I Reminder: A literal is a propositional atom or negated propositional atom.

I Reminder: A clause is a disjunction of literals.

I Reminder: A propositional wff in CNF is a conjunction of clauses.

I MaxSAT Problem: Given a propositional wff ϕ in CNF, determine a
truth-value assignment σ for the propositional atoms such that
the number of clauses in ϕ satisfied by σ is maximized .

I Example: Let ϕ , (x0 ∨ x1) ∧ (x0 ∨ ¬x1) ∧ (¬x0 ∨ x1) ∧ (¬x0 ∨ ¬x1)

ϕ is not satisfied by any truth-value assignment σ (check it out!).

However, it is possible to assign truth-values to {x0, x1} so that three out
of four clauses are true.

Hence, given ϕ above as an instance of MaxSAT (not SAT),
one solution is the assignment σ s.t. σ(x0) = true and σ(x1) = false

which satisfies three clauses in ϕ. There are other solutions.
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MaxSAT problem: weighted CNF formulas

I A weighted clause is a clause together with a weight,
a weight being always a positive number.

I A weighted wff in CNF is a conjunction of weighted clauses.

I (Weighted) MaxSAT Problem: Given a weighted wff ϕ in CNF, determine
a truth-value assignment σ that maximizes the sum of the weights of the
clauses satisfied by σ in ϕ.

I Example: ϕ , (x0 ∨ x1)
5 ∧ (x0 ∨ ¬x1)

6 ∧ (¬x0 ∨ x1)
.2 ∧ (¬x0 ∨ ¬x1)

.4

For every assignment σ : {x0, x1} → {true, false},
the following table determines the value of σ(ϕ):

σ(x0) σ(x1) σ(ϕ)

true true 5 + 6 + .2 = 11.2
true false 5 + 6 + .4 = 11.4
false true 5 + .2 + .4 = 5.6
false false 6 + .2 + .4 = 6.6

A solution (the only one here) is: σ(x0) = true and σ(x1) = false.
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Basic Notions and Notations of Probability Theory

I Given a domain or sample space D, an event is a subset of D.

I A probability function P on a finite sample space D assigns to each event A ⊆ D
a number P(A) in the closed interval of real numbers [0, 1] such that:

(i) P(D) = 1, and
(ii) P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

The number P(A) is called the probability that A occurs .

I Computing the probability of an event A, given that an event C occurs, means
finding which fraction of the probability of C is also in the event A.

This is called the conditional probability of A given C , and is written P(A|C).

If P(C) > 0, then P(A|C) =
P(A ∩ C)

P(C)
and P(A|C) · P(C) = P(A ∩ C).

I Instead of P(A ∩ C), we write P(A,C) more compactly.

I Chain rule , as a product of conditional probabilities:

P(A1, . . . ,An) = P(An|A1, . . . ,An−1) · P(A1, . . . ,An−1)

= P(An|A1, . . . ,An−1) · P(An−1|A1, . . . ,An−2) · P(A1, . . . ,An−2)

= · · · = Πn
i=1P(Ai|A1, . . . ,Ai−1)
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Bayesian networks: An Example
A Bayesian network is a pair (G,P) where G = (V,E) is a DAG, such as:

x1 x2 x3

x4 x5

x6 x7 x8

I P is a set of CPT’s (next defined here ),
with one CPT for each random variable in {x1, . . . , x8}.

I V is a set of vertices, one for each random variable in {x1, . . . , x8}.
I E is a set of edges, describing the dependencies between variables, e.g.:

I each of {x1, x2, x3} is independent of any other variable, for which we
write π(x1) = π(x2) = π(x3) = ∅ and say they have no parents .

I x4 depends on {x1, x2} for which we write π(x4) = {x1, x2} and say

the parents of x4 are {x1, x2} .
I x5 depends on {x2, x3} for which we write π(x5) = {x2, x3} and say

the parents of x5 are {x2, x3} , etc.
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Bayesian networks: What is a CPT?

I Assume we have a Bayesian network (G,P), where G = (V,E) is a DAG.

I Every x ∈ V can be assigned a value from a finite domain Dx, the
sample space of x, which is not necessarily the same for all the variables.

I Let W ⊆ V be a subset of variables. An instantiation p of W maps
every x ∈ W to a value in Dx. We can write {x 7→ p(x)|x ∈ W} for p.

I Let W1,W2 ⊆ V . An instantiation of W1 and an instantiation of W2 are
compatible if they map every x ∈ W1 ∩W2 to the same value in Dx.

I Every x ∈ V is associated with a conditional probability table (CPT).

The CPT for variable x ∈ V is a function T that maps each instantiation of(
{x} ∪ π(x)

)
to a probability in [0, 1] s.t. for every instantiation p of π(x):∑

u∈Dx

T
(
{x 7→ u} ∪ p

)
= 1

Exercise: Explain the reason for this restriction on the function T .
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Bayesian networks: What is an MPE?

I An instantiation I of a subset W ⊆ V is called an evidence
(also called a list of observations in Homework Assignment #9).

I Given an evidence I, a most probable explanation (MPE) for I is an
instantiation I ′ of all the variables in V with the highest probability such
that I and I ′ are compatible.

MPE Problem: Given a Bayesian network (G,P) together with an
evidence I, find an MPE I ′ (not necessarily unique) for I.
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Bayesian networks: An Example (continued)

I For simplicity here, assume all the variables in {x1, . . . , x8} range over {a, a}, i.e.:

Dx1 = Dx2 = Dx3 = Dx4 = Dx5 = Dx6 = Dx7 = Dx8 = {a, a}

The sample space is D , Dx1 × · · · × Dx8 which contains a total of 28 = 256
instantiations of the random variables {x1, . . . , x8}.

I To simplify the notation, it is often useful to list the variables in a fixed order, but
otherwise arbitrary. We here choose the ordering x , (x1, x2, . . . , x8), so that:

I If A is the event of all instantiations of x s.t. x1 = x2 = · · · = x5 = a, then:

A =
{

(a, a, a, a, a︸ ︷︷ ︸
5

, u1, u2, u3)
∣∣u1, u2, u3 ∈ {a, a}

}
I If B is the event of all instantiations of x such that x7 = x8 = a, then:

B =
{

(v1, v2, v3, v4, v5, v6, a, a︸︷︷︸
2

)
∣∣v1, v2, v3, v4, v5, v6 ∈ {a, a}

}
I A ∩ B =

{
(a, a, a, a, a︸ ︷︷ ︸

5

, u, a, a︸︷︷︸
2

)
∣∣u ∈ {a, a}

}
I If C is the event that instantiates all the variables to the value a, then:

C = {(a, a, a, a, a, a, a, a︸ ︷︷ ︸
8

)}
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Bayesian networks: An Example (continued)
Make sure you understand the calculations below, which all use the chain rule
(defined here ) and the DAG-defined dependencies ( here ):

I For events A, B, (A ∩ B), and (B|A) we can compute their probabilities as follows:

P(A) = P(x1 = a) · P(x2 = a) · P(x3 = a)·
P(x4 = a|x1 = x2 = a) · P(x5 = a|x2 = x3 = a)

P(B) =
∑

(v1,...,v6,a,a)∈D
P(x1 = v1) · P(x2 = v2) · P(x3 = v3)·

P(x4 = v4|x1 = v1, x2 = v2) · P(x5 = v5|x2 = v2, x3 = v3)·
P(x6 = v6|x5 = v5)·
P(x7 = a|x4 = v4) · P(x8 = a|x4 = v4, x5 = v5)

P(A ∩ B) = P(A) ·
(

P(x6 = a|x5 = a) + P(x6 = a|x5 = a)︸ ︷︷ ︸
=1

)
·

P(x7 = a|x4 = a) · P(x8 = a|x4 = x5 = a)

= P(A) · P(x7 = a|x4 = a) · P(x8 = a|x4 = x5 = a)

P(B|A) =
P(A ∩ B)

P(A)
= P(x7 = a|x4 = a) · P(x8 = a|x4 = x5 = a)
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Bayesian networks: An Example (continued)

I For event C, which is a subset of event A, we can write:

P(C) = P(A) · P(x6 = a|x5 = a) · P(x7 = a|x4 = a) · P(x8 = a|x4 = x5 = a)
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Bayesian networks: An Example (continued)

I Let I be the instantiation of the subset {x5, x6, x7, x8} such that
I(x5) = I(x6) = I(x7) = I(x8) = a. Let D be the set of all instantiations I′ of
the full set {x1, . . . , x8} that are compatible with I. Hence, D is an event
containing 24 instantiations I′ (why?), each of the form:

I′ = (v1, v2, v3, v4, a, a, a, a)

where v1, v2, v3, v4 ∈ {a, a} and whose probability is:

P(I′) = P(x1 = v1) · P(x2 = v2) · P(x3 = v3) · P(x4 = v4|x1 = v1, x2 = v2)·
P(x5 = a|x2 = v2, x3 = v3) · P(x6 = a|x5 = v5)·
P(x7 = a|x4 = v4) · P(x8 = a|x4 = v4, x5 = v5)

Exercise: Using the CPT’s defined here , find an instantiation I′ ∈ D, compatible
with the instantiation I such that I(x5) = I(x6) = I(x7) = I(x8) = a, for which
the probability P(I′) is maximized.

Hint: You can solve the problem by hand. No need to use a computer.

(This exercise solves the MPE Problem for a particular relatively easy case.)
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Bayesian networks: An Example (continued)
Let Ti be the CPT of random variable xi in tabular form, where 1 6 i 6 8.

T1


x1 P(x1)

a .3
a .7

T2


x2 P(x2)

a .2
a .8

T3


x3 P(x3)

a .9
a .1

T4



x1 x2 x4 P(x4|{x1, x2})
a a a .2
a a a .8
a a a .9
a a a .1
a a a .1
a a a .9
a a a .6
a a a .4

T5



x2 x3 x5 P(x5|{x2, x3})
a a a .5
a a a .5
a a a .6
a a a .4
a a a .3
a a a .7
a a a .1
a a a .9

T6



x5 x6 P(x6|{x5})
a a .1
a a .9
a a .5
a a .5

T7



x4 x7 P(x7|{x4})
a a .7
a a .3
a a .4
a a .6

T8



x4 x5 x8 P(x8|{x4, x5})
a a a .4
a a a .6
a a a .5
a a a .5
a a a .6
a a a .4
a a a .7
a a a .3
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Reducing MPE to MaxSAT

I Consider the CPT Ti of random variable xi. In tabular form, Ti is a set of ni rows,
denoted ri,1, ri,1, . . . , ri,ni , and we can thus write:

Ti = {ri,1, ri,1, . . . , ri,ni}

For example, for CPT T6 defined here which has n6 = 4 rows, we can write:

T6 =
{

[(x5, a), (x6, a), .1], [(x5, a), (x6, a), .9],

[(x5, a), (x6, a), .5], [(x5, a), (x6, a), .5]
}

I For the reduction from MPE to MaxSAT, we represent the pairs (xi, a) and (xi, a)

by propositional atom pi and its negation ¬pi: pi , (xi, a) and ¬pi , (xi, a) .

For example, substituting the representations of (xi, a) and (xi, a) in T6 produces:

T ′6 =
{

[p5, p6, .1], [p5, ¬p6, .9], [¬p5, p6, .5], [¬p5, ¬p6, .5]
}
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Reducing MPE to MaxSAT (continued)

I Transforming a Bayesian network into a weighted CNF:
Every row r in every CPT T is transformed into a weighted clause which contains
the negations of all the propositional atoms in r and is weighted with the negative
logarithm of the conditional probability in r.

For example, CPT T ′6 as a set of four rows (defined here ) is transformed into:

weighted-clause
(
[ p5, p6, .1]

)
,
(
¬p5 ∨ ¬p6

)− log .1

weighted-clause
(
[ p5, ¬p6, .9]

)
,
(
¬p5 ∨ p6

)− log .9

weighted-clause
(
[ ¬p5, p6, .5]

)
,
(
p5 ∨ ¬p6

)− log .5

weighted-clause
(
[ ¬p5, ¬p6, .5]

)
,
(
p5 ∨ p6

)− log .5

Note: a probability p is always a number in the closed interval [0, 1],
so that log p is a negative number and − log p is a positive number.

I We obtain a weighted CNF by collecting the weighted clauses of all the rows in all
the CPT’s.

For our running example with 8 random variables and the DAG shown here :

induced-CNF
(
T1, . . . , T8

)
,
∧

16i68, 16j6ni
weighted-clause

(
ri,j
)
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Reducing MPE to MaxSAT (continued)

I Theorem: For any instantiation I of a Bayesian network which contains
only binary variables, the sum of the weights of the clauses that I leaves
unsatisfied in the induced CNF is equal to − log P(I).

This is Theorem 1 in Using Weighted MAX-SAT Engines to Solve MPE by J. D.
Park, which also includes its proof.

I Corollary: Maximizing the weight of the satisfied clauses minimizes the
sum of the unsatisfied clauses, which is equivalent to maximizing the
probability in the original Bayesian network. Thus, solving the MaxSAT
problem also solves the MPE problem.
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Reducing MPE to MaxSAT (continued)

I The reduction from the MPE problem to the MaxSAT problem as described
in the preceding pages is limited to the case when:

1. All the probabilities in the CPT’s are non-zero, and
2. All the random variables are binary.

I The article by J.D. Park explains how to extend the method in order to lift
both limitations (how to handle zero probabilities and how to allow
non-binary random variables).
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