CS 511, Fall 2018, Handout 29 Unification

Assaf Kfoury

November 13, 2018

Assaf Kfoury, CS 511, Fall 2018, Handout 29

BACKGROUND

- The name "unification" and the first formal investigation of the notion is due to J.A. Robinson (1965).
- Robinson's algorithm for first-order unification has exponential time-complexity in the worst-case.
- The Paterson-Wegman algorithm (1978) for first-order unification has linear time-complexity, but relatively complicated to implement.
- ► The Martelli-Montanari algorithm (1982) for first-order unification has a O(n log n) time-complexity in the worst-case and is somewhat simpler to implement than the Paterson-Wegman algorithm.
- More information on first-order unification the only kind we need in this course can be found by browsing the Web. In particular, click here for an informative Wikipedia article.

Problems of **unification** (and **matching**) are a rich and thriving area of computer science. Search the Web for: *semi-unification, acyclic semi-unification, second-order unification, bounded second-order unification, monadic second-order unification, context unification, stratified context unification, and many other variants, each resulting from particular applications in computer science.*

DEFINITIONS

An *instance* of (first-order) unification is a finite set *S* of equations:

$$S \triangleq \{s_1 \stackrel{?}{=} t_1, \ldots, s_n \stackrel{?}{=} t_n\}$$

where $s_1, t_1, \ldots, s_n, t_n$ are first-order terms (over a given signature Σ).

A substitution σ is always given as a mapping σ : X → T where X is the set of all first-order variables and T is the set of all first-order terms.

Such a substitution $\sigma: X \to \mathcal{T}$ is extended to $\sigma: \mathcal{T} \to \mathcal{T}$ in the usual way.

- A *unifier* or *solution* of *S* is a substitution σ such that $\sigma(s_i) = \sigma(t_i)$ for every i = 1, ..., n.
- Sol(S) is the set of all unifers or solutions of S. S is **unifiable** iff $Sol(S) \neq \emptyset$.
- A substitution σ is a *most general unifier* (*MGU*) of *S* if σ is a "least" element of *Sol*(*S*), *i.e.*, for every $\sigma' \in Sol(S)$ there is a substitution σ'' such that, for all variable *x*, it holds that $\sigma'(x) = \sigma''(\sigma(x))$ more succintly written as $\sigma' = \sigma'' \circ \sigma$.

DEFINITIONS

An *instance* of (first-order) unification is a finite set *S* of equations:

$$S \triangleq \{s_1 \stackrel{?}{=} t_1, \ldots, s_n \stackrel{?}{=} t_n\}$$

where $s_1, t_1, \ldots, s_n, t_n$ are first-order terms (over a given signature Σ).

A substitution σ is always given as a mapping σ : X → T where X is the set of all first-order variables and T is the set of all first-order terms.

Such a substitution $\sigma: X \to \mathcal{T}$ is extended to $\sigma: \mathcal{T} \to \mathcal{T}$ in the usual way.

- A *unifier* or *solution* of *S* is a substitution σ such that $\sigma(s_i) = \sigma(t_i)$ for every i = 1, ..., n.
- Sol(S) is the set of all unifers or solutions of S. S is **unifiable** iff $Sol(S) \neq \emptyset$.
- A substitution σ is a *most general unifier* (*MGU*) of *S* if σ is a "least" element of *Sol*(*S*), *i.e.*, for every $\sigma' \in Sol(S)$ there is a substitution σ'' such that, for all variable *x*, it holds that $\sigma'(x) = \sigma''(\sigma(x))$ more succintly written as $\sigma' = \sigma'' \circ \sigma$.

Notational Conventions:

1. We may write a substitution σ as the set of its *non-trivial bindings*, *i.e.*,

$$\sigma = \{ x \mapsto \sigma(x) \mid \sigma(x) \neq x \}.$$

- 2. In particular, if we write $\sigma = \{ \}$ (the empty set), then σ is the identity substitution.
- 3. Whenever convenient and not ambiguous, we write " σ t" instead of " σ (t)".

AN ALGORITHM FOR FIRST-ORDER UNIFICATION

- We present an adaptation of the Martelli-Montanari algorithm, one of several available for first-order unification. (Its O(n log n) time-complexity depends on some clever data structuring with dag's not in this handout.)
- We can view unification as a rewrite system, the goal of which is to repeatedly transform a finite set of equations until the solution "stares you in the face".
- According to this view, unification can be carried using six transformation (or rewrite) rules (where the symbol "⊕" denotes disjoint union):

AN ALGORITHM FOR FIRST-ORDER UNIFICATION

- We present an adaptation of the Martelli-Montanari algorithm, one of several available for first-order unification. (Its O(n log n) time-complexity depends on some clever data structuring with dag's not in this handout.)
- We can view unification as a rewrite system, the goal of which is to repeatedly transform a finite set of equations until the solution "stares you in the face".

According to this view, unification can be carried using six transformation (or rewrite) rules (where the symbol "⊕" denotes disjoint union):

[delete] $\implies S$ $[\text{decompose}] \quad \{f(s_1,\ldots,s_m) \stackrel{?}{=} f(t_1,\ldots,t_m)\} \ \uplus \ S \implies \{s_1 \stackrel{?}{=} t_1,\ldots,s_m \stackrel{?}{=} t_m\} \ \cup \ S$ $\{f(s_1,\ldots,s_m) \stackrel{?}{=} g(t_1,\ldots,t_n)\} \ \ \ \ \ S \implies FAIL$ [conflict] where $f \neq g$ $\implies \{x \stackrel{?}{=} t\} \cup S$ [orient] where $t \notin X$ \implies { $x \stackrel{?}{=} t$ } \cup { $x \mapsto t$ }(S) [eliminate] where $x \notin Var(t)$ and $x \in Var(S)$ [occurs check] { $x \stackrel{?}{=} t$ } $\exists S$ ⇒ FAII where $x \in Var(t)$ and $t \notin X$

(THIS PAGE INTENTIONALLY LEFT BLANK)