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REVIEW and PRELIMINARIES

I This handout continues Handout 10 and Handout 27, which introduced
tableaux for propositional logic and tableaux for first-order logic .

I This handout also depends on Handout 29, which is a presentation of
unification , limited to the kind we use in first-order tableaux (and, later,

in first-order resolution).
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second TABLEAU method: FREE VARIABLES + UNIFICATION

I We avoid some of the problems in the first tableau method (in Handout
27), by modifying the quantifier rules and how we use them – informally:
I delay applications of rule (∀), the source of the problems, when possible,
I when (∀) is applied, instantiate with a fresh variable (not a ground term),
I the generated sub-formulas in the tableau T are thus no longer closed,
I the new fresh variables in T are implicitly universally quantified outside T .

I Modified quantifier rules for second tableau method :
I rule (∀) for WFF’s that start with a universal quantifier:

(∀) ∀xϕ(x)

ϕ[x := y]

where y is a new fresh variable,

I rule (∃) for WFF’s that start with an existential quantifier:

(∃) ∃xϕ(x)

ϕ[x := f (y1, . . . , yn)]

where f is a new Skolem function and {y1, . . . , yn} = FV(∃xϕ).1

1
Note the (subtle) error in the rule (∃) in the Wikipedia article, under “First-order tableau with unification” – click here .
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second TABLEAU method: FREE VARIABLES + UNIFICATION

I What to do with the free variables that rule (∀) insert in a tableau?

We need to introduce an additional rule, called the substitution rule,
which, every time it is applied, is relative a (first-order) unifier.

I If σ is a unifier, then we will write “(σ)” to denote the substitution rule
relative to σ, spelled out as follows:

(σ) If σ is the most general unifier (MGU) of two literals A and B ,
where A and ¬B are on the same path of tableau T ,
then σ is applied simultaneously to all the WFF’s in T ,

where a literal is an atomic WFF.
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second TABLEAU method: FREE VARIABLES + UNIFICATION

I For a precise formulation of the rule (σ):
I If T is a tableau, and π is a path from the root of T to a leaf node in T , then

T ⊕π ϕ
is a new tableau obtained from T by appending ϕ below the path π.

I WFF’s(π) is the set of WFF’s occurring along a path π in a tableau.
I MGU(A,B) is the most general unifier of two literals (atomic formulas).
I paths(T) is the set of paths in the tableau T .

I Rule (σ) for tableaux with free variables:

(σ)
T

σ(T) ⊕π× π ∈ paths(T), {A,¬B} ⊆ WFF’s(π), σ = MGU(A,B)

Note that the unifier σ is applied to the entire tableau T .

Schematically in the example on the next slide:
T

|

×
σ

1
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second TABLEAU method: example
Γ ,

{
∃x P(x), ∀x

(
¬P(x) ∨ Q(x)

)
, ∀x

(
¬Q(x) ∨ R(x)

)
, ∀x

(
¬P(x) ∨ ¬R(x)

)}
Γ

∃xP (x)

∀x (¬P (x) ∨Q(x))

∀x (¬Q(x) ∨R(x))

∀x (¬P (x) ∨ ¬R(x))

P (c)

¬P (v1) ∨Q(v1)

Q(v1)

¬Q(v2) ∨R(v2)

R(v2)

¬P (v3) ∨ ¬R(v3)

¬R(v3)

×
σ4

¬P (v3)

×
σ3

¬Q(v2)

×
σ2

¬P (v1)

×
σ1

1

where σ1 , {v1 7→ c}, σ2 , {v2 7→ c}, σ3 , {v3 7→ c}, σ4 , { } (identity substitution)
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second TABLEAU method: FREE VARIABLES + UNIFICATION

Soundness and completeness of the free-variable tableau method also hold:

I Soundness of rules {(∀), (∃), (σ)} (together with the rules for
propositional tableaux): If we can generate a closed tableau from an

initial set Γ of sentences (in prenex normal form), then Γ is unsatisfiable.

I Completeness of rules {(∀), (∃), (σ)} (together with the rules for
propositional tableaux): If a set Γ of sentences (in prenex normal form) is

unsatisfiable, there exists a closed tableau generated from Γ by these rules.
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ground TABLEAUX versus free-variable TABLEAUX

I We compare the two methods on a simple example:

Γ ,
{
∀ x ∀ y

(
P(x, y)→ P(y, x)

)
, P(a, b), P(b, c), ¬P(c, b)

}

I By easy inspection, Γ is not satisfiable – which will be here confirmed by tableaux.

Preliminary remarks for a first comparison:

I We first compare the two methods with no look-ahead of any kind

and no heuristics of any kind (e.g., apply “unary” rules before “binary” rules).
The resulting tableaux are not optimal.2

I For this example, the set of ground terms is finite: {a, b, c}.
I For brevity, we merge two consecutive applications of rule (∀) into a single step ,

when applied to the sentence ∀ x ∀ y
(
P(x, y)→ P(y, x)

)
. Moreover, for brevity

again, we merge into that single step the application of rule (→) which
immediately follows it.

I We assume a fixed order in which pairs of ground terms are generated, namely:
(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c),
which is the order in which the variable pair (x, y) is instantiated to ground terms.

2
There are different ways of defining the optimality of a tableau. For simplicity here, we identify optimality with least number of

applications of the expansion rules.
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ground TABLEAUX versus free-variable TABLEAUX

I On slide 15 is a ground tableau (first method) for Γ
(which is just too large to fit in a single slide . . .).

I On slide 16 is a free-variable tableau (second method) for Γ.

I Both tableaux are organized similarly, but not optimally:

I Every node is labelled with a boxed pair of integers i : j with i > j > 0:

i is the unique ID number of the node in the tableau,
j is the ID number of the node on which node i depends.

I Label i : 0 means the WFF at node i is from Γ.
I Node ID’s are linearly ordered in the order in which the tableau is developed:

using WFF’s in Γ in their given order from left to right ,3

except when a conflict between atomic WFF’s is detected.

3
So that, in particular, ∀ x ∀ y

(
P(x, y) → P(y, x)

)
is considered first and ahead of P(a, b), P(b, c), and ¬P(c, b).
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ground TABLEAUX versus free-variable TABLEAUX

a ground tableau for Γ ,
{
∀ x ∀ y

(
P(x, y) → P(y, x)

)
, P(a, b), P(b, c), ¬P(c, b)

}
Γ

1:0 ∀x∀ y
(
P (x, y) → P (y, x)

)

3:1 P (a, a)

...

2:1 ¬P (a, a)

5:1 P (b, a)

8:1 P (c, a)

...

7:1 ¬P (a, c)

10:1 P (a, b)

12:1 P (b, b)

18:1 P (c, b)

20:0 ¬P (c, b)

×

17:1 ¬P (b, c)

19:0 P (b, c)

×

11:1 ¬P (b, b)

14:1 P (c, b)

16:0 ¬P (c, b)

×

13:1 ¬P (b, c)

15:0 P (b, c)

×

9:1 ¬P (b, a)

×

4:1 ¬P (a, b)

6:0 P (a, b)

×

1
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ground TABLEAUX versus free-variable TABLEAUX

a free-variable tableau for Γ ,
{
∀ x ∀ y

(
P(x, y) → P(y, x)

)
, P(a, b), P(b, c), ¬P(c, b)

}
Γ

1:0 ∀x ∀ y
(
P (x, y) → P (y, x)

)

3:1 P (v2, v1)

6:1 P (v4, v3)

8:0 ¬P (c, b)

×
σ3

5:1 ¬P (v3, v4)

7:0 P (b, c)

×
σ2

2:1 ¬P (v1, v2)

4:0 P (a, b)

×
σ1

1

where σ1 , {v1 7→ a, v2 7→ b}

σ2 , {v3 7→ b, v4 7→ c}

σ3 , { } (identity substitution)
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ground TABLEAUX versus free-variable TABLEAUX

Preliminary remarks for a second comparison:

I We use the same notation and conventions as those in the first comparison.

I We use the same ordering of the WFF’s in Γ, and the same ordering of pairs of
ground terms, as those in the first comparison.

I Where the second comparison is different from the first comparison:

I We use the heuristic unary expansion rules before binary expansion rules .
I We instantiate the variable pair (x, y) only to ground terms directly leading to a conflict.

Specifically, (x, y) is instantiated to the first pair in {(a, a), (a, b), . . . , (c, c)} that

makes one (or both) of the branches of the expansion of ∀x ∀y
(
P(x, y) → P(y, x)

)
contradicts an earlier WFF on the same path from the root.

I With these added heuristics, the two methods appear equally efficient – at least for
Γ in this example.

I On slide 19 is a ground tableau (first method) for Γ
(now small enough to fit in a single slide).

I On slide 20 is a free-variable tableau (second method) for Γ.

I Can we do better? One more free-variable tableau (second method) for Γ is on
slide 21, which is better (shorter) than all the preceding tableaux.
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ground TABLEAUX versus free-variable TABLEAUX

another ground tableau for Γ ,
{
∀ x ∀ y

(
P(x, y) → P(y, x)

)
, P(a, b), P(b, c), ¬P(c, b)

}
Γ

1:0 P (a, b)

2:0 P (b, c)

3:0 ¬P (c, b)

4:0 ∀x∀ y
(
P (x, y) → P (y, x)

)

6:4 P (b, a)

8:4 P (c, b)

×

7:4 ¬P (b, c)

×

5:4 ¬P (a, b)

×

1
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ground TABLEAUX versus free-variable TABLEAUX

another free-variable tableau for Γ ,
{
∀x∀y

(
P(x, y) → P(y, x)

)
,P(a, b),P(b, c),¬P(c, b)

}
Γ

1:0 P (a, b)

2:0 P (b, c)

3:0 ¬P (c, b)

4:0 ∀x ∀ y
(
P (x, y) → P (y, x)

)

6:4 P (v2, v1)

8:4 P (v4, v3)

×
σ3

7:4 ¬P (v3, v4)

×
σ2

5:4 ¬P (v1, v2)

×
σ1

1

where σ1 , {v1 7→ a, v2 7→ b}

σ2 , {v3 7→ b, v4 7→ c}

σ2 , { } (identity substitution)
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ground TABLEAUX versus free-variable TABLEAUX

one more free-variable tableau for Γ ,
{
∀x∀y

(
P(x, y) → P(y, x)

)
,P(a, b),P(b, c),¬P(c, b)

}
Γ

1:0 ∀x∀ y
(
P (x, y) → P (y, x)

)

3:1 P (v2, v1)

5:0 ¬P (c, b)

×
σ2

2:1 ¬P (v1, v2)

4:0 P (b, c)

×
σ1

1

where σ1 , {v1 7→ b, v2 7→ c}

σ2 , { } (identity substitution)
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second TABLEAU method: exercises

1. Exercise. Redo Exercise 1 on the last slide of Handout 27, now using free-variable tableaux.
Spell out a strategy that will minimize the size of the tableau you produce.

2. Exercise. Redo Exercise 2 on the last slide of Handout 27, now using free-variable tableaux.
Spell out a strategy that will minimize the size of the tableau you produce.
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